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We propose a conformant likelihood estimator with exogeneity restrictions (CLEER) for
random coefficients discrete choice demand models that is applicable in a broad range of
data settings. It combines the likelihoods of two mixed logit estimators—one for consumer
level data, and one for product level data—with product level exogeneity restrictions. Our
estimator is both efficient and conformant: its rates of convergence will be the fastest
possible given the variation available in the data. The researcher does not need to pre-test or
adjust the estimator and the inference procedure is valid across a wide variety of scenarios.
Moreover, it can be tractably applied to large datasets. We illustrate the features of our
estimator by comparing it to alternatives in the literature.

1 Motivation

Demand models with endogenous prices using the discrete choice random utility framework provide
a tractable framework to flexibly estimate substitution patterns between differentiated products (see
e.g., Berry et al., 1995, BLP95). This model has been estimated using a wide array of datasets featuring
consumer level data, product level data, or a mixture of both. We propose a likelihood-based estimator for
BLP-style models that applies to all the above data settings, which we term the Conformant Likelihood
Estimator with Exogeneity Restrictions (CLEER). Intuitively, it combines the likelihoods of two mixed
logit estimators, one for consumer level data (assuming it is available), and one for product level
data, along with product level exogeneity restrictions. It moreover recovers product quality terms
as parameters of the model. We impose no additional assumptions over those posited on demand in
BLP95, which are also used in other estimators extended with consumer level data (e.g., Petrin 2002;
Berry et al. 2004a (BLP04); Goolsbee and Petrin 2004; Chintagunta and Dube 2005). We show CLEER
converges at the fastest possible rate, which depends on underlying data and identification strength, and
always produces asymptotically valid inference using standard techniques, regardless of the data and
identification strength. We term this property conformance, which is a novel property in this literature.
We further establish that CLEER is fully efficient under the assumptions stated within.

To fix ideas, consider first the case in which a large sample of consumer purchase data is available. The
basic structure of the demand model proposed in BLP is mixed (or random coefficients) multinomial

logit (Hausman and Wise, 1978). The standard multinomial logit MLE has nice computational
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properties (McFadden, 1974). For example, it is globally concave in the parameters, and the gradient
and Hessian have simple expressions. Therefore, with consumer level data in hand, it is natural to
consider estimating a random coefficients demand model via MLE using the individual likelihood of
purchase. However, in order to accommodate price endogeneity, the basic structure of BLP requires
the estimation of product (by market) quality parameters.! It can be demanding of consumer level
data alone to estimate such a specification due to the presence of potentially many (hundreds, or even
hundreds of thousands, depending on the application) product quality parameters.

To address this issue, CLEER incorporates product level data on market shares.? Product data can
be augmented with a consumer level sample which is a—perhaps small, perhaps large—subset of the
market population. From this perspective, the loglikelihood of both individual consumer data (‘micro’
data) and market shares (‘macro’ data) consists of two terms: a micro term following the mixed logit and
amacro term that integrates over the distribution of consumer characteristics in the population. With
the macro term, it is possible to identify product quality parameters. However, these two terms do not
exploit product level exogeneity restrictions which may have power to identify preference heterogeneity.
Moreover, typically researchers are interested in (potentially endogenous) explanatory factors of product
quality, which are not identified by these terms alone.

The third term in the CLEER objective function directly incorporates information contained in the
product level exogeneity restrictions of BLP95. These exogeneity restrictions are additional assumptions
on the data-generating process. Indeed, as BLP95 show, with sufficient exogeneity restrictions it is
possible to identify all model parameters even if there is no consumer sample. The primary contribution
of this paper is to provide an estimator that fully exploits these two sources of identifying variation to
achieve the fastest possible rate of convergence, efficiency, and valid inference without relying on any
pre-test of the data or tuning parameters.

CLEER is compatible with the bulk of datasets in the applied literature.® In particular, it is well-
behaved with consumer samples of any size. The objective function comprises three terms that
can diverge at different rates: the micro loglikelihood with the consumer sample size, the macro
loglikelihood with the market size, and a GMM objective function based on the product exogeneity
restrictions with the number of products. These differing rates in the objective function are what make
our estimator conformant: the estimator’s rates of convergence adjust according to the relative sample
sizes and strength of information from the objective functions’ composite terms.*

As we illustrate in app. C, observed variation in demographics identifies both observed and un-
observed taste heterogeneity as long as that variation shifts consumers’ utility across products.® As
emphasized by Gandhi and Houde (2020, GH20), overidentifying product level exclusion restrictions
can also identify taste heterogeneity. If the number of sampled consumers grows faster than the number
of markets, then exploiting the identifying information (if present) in the micro sample will produce

a faster convergence rate than relying on product level exclusion restrictions. Adding the product

1BLP95 and Nevo (2000) have noted that product quality parameters could be used to separate the estimation of ‘nonlinear’
parameters that govern substitution patterns from the ‘linear’ parameters of the model such as the mean price effects.

2CLEER also covers intermediate cases when different data (micro versus macro) is available in different markets.

3For expositional purposes, we assume that the researcher has direct access to consumer level first choice data and/or
product level market share data. Although CLEER could accommodate both ranked choice data (e.g., Berry et al., 2004a;
Grieco et al., 2023a) and aggregated statistics of micro data (Sweeting, 2013), we do not explore those extensions here.

“The use of the plural ‘rates’ is because different elements of our estimator vector converge at different rates.

>Berry and Haile (2024) make a similar point in a nonparametric context.



level exclusions to the estimator is useful when the consumer sample is small (or not present) or its
identfying demographic variation is weak (or nonexistent). Note that when this variation is nonexistent,
the information used by the likelihood alone is insufficient for identification. Conversely, when product
level instruments are few or weak, product level restrictions are insufficient for identification. In either
case, CLEER converges at the optimal rate and is efficient because it exploits all available sources of
identifying information. However, weak identification of either component may result in a slower
(though still optimal) rate of convergence.

We formally establish consistency and asymptotic normality of CLEER in section 4. The proofs are
nonstandard to accommodate CLEER’s conformance features. We show that conducting inference
using formulas familiar from the standard extremum estimation framework is asymptotically valid.
Validity obtains regardless of the relative divergence rates and even though the vector of product quality
parameters increases in dimension. More generally, the inference procedure is robust to the source
of identification, i.e. the inference procedure is valid both when the micro data provide sufficient
information to recover the taste heterogeneity parameters and when such information must come from
the product level exclusion restrictions: one does not have to specify or know. Finally, we describe the
conditions under which CLEER obtains the semiparametric efficiency bound in section 5.2.

Section 6 provides a comparison of CLEER to other approaches. We note several features of CLEER
which facilitate the optimality, conformance, and robustness to weak identification. These include:
(1) utilizing the macro likelihood to avoid enforcing share constraints to achieve efficiency and simplify
inference; (2) fully utilizing the score of the likelihood with respect to observed and unobserved
consumer heterogeneity parameters; and (3) allowing overidentification of product level exclusion
restrictions to provide an additional source of identification. While previous estimators have utilized
subsets of these elements, ours is the first to deploy all to achieve full efficiency and conformance.

Our approach has broad applicability and is appropriate for many demand estimation applications
when (either or) both product level data on shares and consumer level data on purchases is available.®
Although BLP04 and Petrin (2002) are canonical examples of applications, there are many more. An
incomplete list of examples includes Goeree (2008), Ciliberto and Kuminoff (2010), Crawford and
Yurukoglu (2012), Starc (2014), Wollmann (2018), Crawford et al. (2018), Hackmann (2019), Neilson
(2019), Backus et al. (2021), Grieco et al. (2023a), Montag (2023), and Jiménez-Hernandez and Seira
(2021). A common example in economics and marketing is combining grocery store scanner data
with household level data, for example the datasets maintained by IRI or Nielsen. Examples include
Chintagunta and Dube (2005) (IRT) and Tuchman (2019) and Backus et al. (2021) (Nielsen).

Berry and Haile (2014) showed identification of objects in a nonparametric class of discrete choice
demand models using product level data and sufficient instruments; Berry and Haile (2024) shows
how observing consumer level data reduces the number of instruments in these models. CLEER is
applied to the most common parametric version of these models used in applied work. It is most directly
comparable to GMM approaches based on micro-moments (e.g. Petrin 2002 and BLP04). In related
work, Conlon and Gortmaker (2023, CG23) provide a comprehensive discussion of best practices for
incorporating moments based on a variety of types of auxiliary consumer level data into this canonical

GMM-based estimation of BLP-style models. Other researchers have proposed using the likelihood of

®In app. G, we provide two algorithms to efficiently compute CLEER. These are both implemented in this paper’s companion
Julia package, Grumps.



consumer data in estimating BLP-style models (e.g., Goolsbee and Petrin, 2004; Chintagunta and Dube,
2005; Train and Winston, 2007; Bachmann et al., 2019).” Allen et al. (2019) combine the likelihood of an
equilibrium search model with a penalty term of moment equalities.

Our problem and approach share features with several strands of the econometrics literature. For
instance, Imbens and Lancaster (1994) consider the problem of combining different sources of data
albeit that there the micro data are assumed to provide identification and the different data sources are
either independent with sample sizes growing at the same rate or the macro data can be considered
to be of infinite size. Ridder and Moffitt (2007) provide a survey of methods to combine different data
sets and van den Berg and van der Klaauw (2001) combine data sets to estimate a duration model. It
is common in the panel data literature to have the dataset grow in different dimensions at different
rates (e.g. Hahn and Newey, 2004). Our paper does not assume a panel structure for either products
or consumers. Moreover, we know of no examples in which there are as many growth dimensions
to consider as here. Having different elements of the estimator vector converge at different ratesisa
common feature of the semiparametric estimation literature (e.g. Robinson, 1988). Abadie et al. (2020)
consider the case of sample size approaching population size; their problem is different from that
studied here. Finally, several papers cover asymptotics in random coefficient discrete choice models
with only product-level data: The first such paper is Berry et al. (2004b, BLiP04). Freyberger (2015) and
Hong et al. (2021) are closer in spirit to ours in that the number of markets increases, whereas in BLiP04
the number of products increases but the number of markets is fixed. Moon et al. (2018) consider a BLP
type model placing panel data assumptions on the product quality terms, whereas we do not impose a
panel structure. Myojo and Kanazawa (2012) show how additional moments can be constructed on the
basis of consumer level data and discuss supply side restrictions.

The following section reviews the random coefficients demand model. Section 3 introduces CLEER.
We state our formal consistency and asymptotic normality results in section 4. Conformance and
efficiency properties are described in section 5. Section 6 illustrates the trade-offs in going from CLEER
to GMM estimators that are commonly used in applied work. Section 7 compares the finite sample
performance of CLEER relative to alternative estimators in a Monte Carlo study. Section 8 concludes.

2 Random Coefficients Demand Model

This section reviews the random coefficients discrete choice demand model and describes the data
used by our estimator. The model matches that of BLP95 with slightly adjusted notation for clarity. We
assume the researcher has access to both product level shares and a sample of consumer level choices,
although we will allow this sample to be empty. Our estimator assumes that consumer level choices are
drawn from a subset of consumers on which the market level shares are based. In contrast, the previous
literature has treated micro and macro data as different samples (e.g., Imbens and Lancaster, 1994).
2.1 Model

The econometrician observes M markets. In each market m, J,,, products are available for purchase.
A product j in market m is described by the tuple (X;y,, §m), Where x;,, is a d.-dimensional vector of
observed characteristics of the product and &, is a scalar unobserved product attribute. We often refer
to &, as unobserved product quality, but it is important to keep in mind that it reflects the (common

component of) unobserved preference for product j in market m which may vary across markets. To

"MLE is a popular choice for estimating discrete choice models that do not have endogenous product characteristics; see
e.g. hospital choice as in Ho (2006) and urban/location models such as Bayer et al. (2007).



allow for endogeneity in product characteristics, we specify X, = (%ju,2jm)- The only distinction
between X;,, and p;,,, (typically price) is that %;,, is uncorrelated with &,

There are N,, consumers in market m drawn from a market-specific distribution described below.
Consumer i is characterized by (2., Vim, €im) Where z;,, is a d,-vector of potentially observable
consumer characteristics (such as income), and v;,,, isa d,, < d,-vector of unobservable consumer
taste shocks to preferences for product characteristics. Finally ¢;,,, is aJ,,, + 1-vector of idiosyncratic
product specific taste shocks for each product and an outside good (e.g., no purchase) that is distributed
according to the standard Type-I extreme value (Gumbel) distribution. In the population, z;,, and v,
are mutually independent and distributed according to known distributions G, and F,,, respectively.
In practice, the distribution of z;,, is typically taken from external data (such as the population census)
while the distribution of v, is typically assumed to be a standard normal and independent across
components of v;,,. In section 4.3 we discuss the implications of using an estimate of G,,.

A consumer in market m maximizes (indirect) utility by choosing from the J,, available products and
the outside good, indexed by zero. Let y; j,, = 1if consumer i in market m chooses product j and zero
otherwise. Utility of consumer i when purchasing product j in market m is

Uijm = Sy + i + " + €4y, (1)
where 6;;,1 = J-Vmﬁ * + &, represents the mean utility for product j for consumers in market m, uf,ilm =

! . . I .
ijm@"‘Zzim =) ki @,‘;ﬁ,x}‘mz{‘m represents deviations from mean utility due to observed demographic

!

. Vi
variables z;p,, and p;," = xjvm@”vim = Dk 0, xk vk

” imVim are deviations due to taste shocks v;,. In

most applications, several elements of @*% and @*” are restricted (e.g., @*” is often assumed to be

diagonal), so we will refer to 6% and 6*” as the vectors of free parameters of @*Z, @* to estimate.

Although there is no need to assume &, 4# and ¢ have a linear form, we consider the linear form

since it is the most common specification and simplifies notation.® As we shall see below, some of our

results depend on whether 6*Z = 0 which implies ,u;,, = 3,47™ = 0, i.e., when changes in observed

demographics do not affect utility. Utility of the outside good is normalized to u;p,, = €j0m- When
convenient, we collect the consumer heterogeneity parameters into the vector 8* = [67",0""]".

The model yields choice probabilities for consumer i of selecting product j conditional on demo-

graphics z;,,, and product characteristics X,,,, §,,, as a function of parameters,
z v
6,5) = P = 11 7 X £ 615) = f J:xp(% + i jmz+ /"ijmi
Dk €XP(Okm + Kiiom + Kilom)

3jm(Zim»v36,0)=4 jm (;6,6)

dF,(v), @)

where 8., = ugi™ = i = 0 forall i, m.
Similarly, unconditional choice probabilities, which correspond to expected market shares, are

obtained by integrating 7rﬁn with respect to the distribution of consumer demographics,

In(6.8) = POm = 11 Xom ) = [ G (615)2Gn(@) )
As noted by Berry (1994), when we fix 6, (3) defines a one-to-one mapping from §,,, to unconditional
choice probabilities in a market. We denote the inversion of this mapping as 6,,,(6, 7,,,) and let 6(6, )
represent its concatenation across markets.

The model also imposes product level exogeneity restrictions of the form,

8Additive separability of & in &i is essential to our approach.



E(§jm | bjm) = 0, 4
where bj,, is a vector of instruments including X;,,,. Further, b;,, may contain additional instruments.
The literature has used various approaches such as cost shifters, BLP instruments (in various forms,
including the “differentiation instruments” proposed by GH20), Hausman instruments, and Waldfogel
instruments. These moment restrictions will serve two purposes. First, they are needed to identify
mean product utility parameters, 3. Second, if dj, > dg they may provide additional information that
is potentially useful in estimating other model parameters. For example BLP95 uses restrictions of this
form to recover consumer heterogeneity parameters 6* in the absence of consumer level data.

2.2 Data

The researcher has access to two types of data on consumer choices. First, she observes market level
data on the quantity of purchases, the vector of characteristics x;,, of each product, and the total market
size, N,,,.° Each consumer has unit demand and purchases either one of the “inside” products or the
outside good. That is, the researcher can construct market shares s;,,, = N1 Zi”; Yijm- Note that the
observed market shares s,, need not equal choice probabilities 7%, due to the finite population size,
however s, £>7t;"n as N,,—~> 0.

Second, for a subset of I,,, consumers, the researcher observes both the consumers’ choices and
their demographics. That is, the researcher observes {(y;;,., zin )} for these consumers. We use D;,,, as a
dummy variable to denote whether consumer i is in this micro-sample. As we will describe below, our
methodology combines the micro-sample with the product shares by integrating out z;,,, in the choice
probabilities when individual i is outside the micro-sample. We can accommodate several forms of
selection. In app. A.2 we show that for random sampling and deterministic selection on choices y;;,
(e.g., administrative data when outside good purchases are not reported) no adjustments are needed.

We further show how to accommodate selection on demographics z;,,.

3 Estimator
This section proposes CLEER, which combines the mixed data likelihood, 1(8, 5), of the micro and

macro choice data and a GMM objective function j} based on (4),
6,6,5) = arg min(— log 1.(6, 8) + #(B, 6)). (5)
6,8,8

Notice that the likelihood is a function of (6, §) but not 3, whereas the product level moments (PLMs)
are functions of (3, §) but not 6. This separability has been noted previously in the literature, but will
play an important role in making our estimator computationally feasible. The following two subsections
describe the two terms of the objective function in detail.
3.1 Likelihood components of the objective function

The mixed data likelihood contains two parts relating to the micro and macro data. To understand its
elements, first suppose that we observed y;,,, for all N,,, individuals in market m. Recall that if D;,,, = 1,

(Yim» Zim) are jointly observed. Then the loglikelihood would be,'°
M Jm Np

log ﬁ(@, 5) = Z Z Z Yijm (Dim 10g O}'Zrilm(e’ 5) +@0- Dim) 10g O}m(ea 5)) ’ (6)

m=1 j=0 i=1
This is an extension of the standard mixed logit estimator for N, observations where z;,, is missing

when D;,,, = 0. The loglikelihood sums over all N,,, consumers in the market. If an observation i is

°As in the previous literature, researchers need to observe or N, in order to compute market shares from quantity data.
19For expositional simplicity, we consider the cases of random selection or deterministic selection on y;.,,, into the micro
sample. As discussed in app. A.2, selection on demographics requires an adjustment to account for sampling.



in the micro data then we see z;,, and can condition on it, whereas otherwise we integrate over the
distribution of z;,,, conditional on this consumer not being in the consumer sample.

Of course, we do not directly observe the choices of consumers who are not in the micro sample.
However, the loglikelihood can be equivalently written in terms of the consumer level observations and

the market level share data,

. M Jy, Nm sz(e 5) M Im
log L(6,6) = Z Z ZDimyijm (6 5 + Z N, Z Sjm 10g G, (6, 6), (7
m=1 j=0i=1 m=1 Jj=0
micro macro

where the first term is the contribution of the consumer level data and the second term is the contribution
of the market level data. In order to express the second term using observed market shares, we add and
subtract log g;,,, to control for the fact that the consumer level data represent a subset of the consumers
who make up the market. It is convenient to refer to the two terms of the likelihood separately, so we
define log L* and log ™ as the micro and macro terms of (7), respectively. Alternatively, the estimator can

be written by adjusting the macro term to avoid double counting the consumers in the micro-sample:
M J, Ny, M Jn

logh(®.8)= 3 3> Dymijmloga™in(6,8)+ 3 2( S — ZDlmyum)log n(6.5). (8)

m=1 j=0i=1 m=1 j=0

micro macro
These two formulations, while equivalent, emphasize different features of the estimator so we will refer

to the one that is most convenient at the time.

The mixed data likelihood can be optimized in isolation to yield an estimator for (6*, §*). Since the
first stage does not separate x from &, endogeneity concerns do not arise. This estimator can be paired
with a plug-in estimator for *—autilizing the instruments b—to yield a two-step estimator. Asitisa
useful basis for comparison, we refer to this as the mixed data likelihood two-step estimator (MDLE).
Under stronger assumptions than are necessary for CLEER, the two-step estimator is consistent
and asymptotically normal. However, it is neither conformant nor generally efficient. The reason
is straightforward: the MDLE does not incorporate information contained in the PLMs (4) when
estimating 6.

To summarize, the mixed data likelihood makes full use of the micro and macro choice data.

3.2 Product Level Moments (PLM)
The CLEER objective function combines the mixed data likelihood with an additional term that

penalizes violations of the product level exogeneity restrictions,

" 1. PR
1(B,6) = Emv(ﬁ, S)Wri(B, 5) 9
where W is a positive definite weight matrix and
M Jp
(8, ) = Z Z b]m(ajm - ;Bvxjm)- (10)
m=1 j=1

In practice, an initial choice of W would be (B”B)~!, where Bis the J X d}, matrix withJ = Zm Jy, TOWS
b;n. Note that, unlike in standalone GMM estimation, the scaling factor 1/2 in front of the ‘J statistic’ in
(9) matters since it affects the relative weight placed on log L versus ¥ in the objective function.

If the dimension of bj,, dy, is the same as that of 8, dg, a situation we shall refer to as exact
identification of 3 then 6%, §* are estimated off the likelihood portion and 8* off the GMM portion. In
this special case, CLEER is equivalent to the MDLE. Additional restrictions result in overidentification

of §* which can be used to aid the estimation of 6*. Indeed, then ¥ will generally be positive (i.e.



nonzero) so that both logﬁ and ¥ contribute to the estimation of 6%, §*. However, because the micro
log likelihood sums over I = er\::l I,,, terms whereas ¥ involves sums over J terms these additional
product level restrictions can be asymptotically negligible for 6*, §* as we discuss in section 5.2.

To achieve efficiency, b;,, should be chosen via a two-step procedure to be the optimal instruments
for 0%, B* in the sense of Chamberlain (1987). In this case dj, = dg + dg, and generally (10) will not be

zero at the optimum, so the choice W matters.

4 Consistency and Asymptotic Normality

This section formally establishes the consistency and asymptotic normality of CLEER as the number
of markets M grows. This is contrast to the proof of consistency Berry et al. (2004b) where M is fixed
but the number of products within a market grows. The proof is complicated by several features of the
estimator. In particular, [i| the dimension of &, the number of observed products across all markets, is
growing with M by construction; [ii| the rate of convergence of the estimator depends on the relative
rates of divergence of the micro sample I, the number of markets M, and the population of each market
N; [iii] the rate of convergence may be effected by weak identification arising from the the micro-
sample, the product level exclusion restrictions, or both.

While we have presented CLEER in its most natural form for applied work in section 3, the proof of
consistency is more straightforward if we write the estimator in a reparameterized and recentered, but
equivalent form, as we describe in the following subsection.

4.1 Objective function

Section 3 defines CLEER as an estimator of (6%, §*, 8*). Since there is a one-to-one mapping between
mean product qualities, §, and unconditional choice probabilities, 7, for fixed consumer heterogeneity
parameters 6 (Berry, 1994) and moreover since 3 can be profiled out of the objective function, it is
equivalent to write the estimator in terms of (8, r) where 7 = [7y, ..., tyf]” With 7, = [Ty s o0r 7T Jmm]v.

So the parameter vector 7 excludes the outside good probabilities, 7y,, = 1 — Zj:l Tl and the

dimensions of § and 7 are both J.!'! This is convenient because s,, LA 7, independent of 6 while
oy, = 6,,(6%, 7},) depends on the unknown 6*.
Following this formulation, consider the sample objective function, which consists of three terms,
Q6,7m) = £(6,7r) + DB, ) = L6, ) + L™(7) + D(6, 7). (11)
The first term, £°*, is the (negative) log likelihood of the micro data net of the contribution to market

shares (to avoid double counting with the second term, as above),

. L*(6*,5%) . Sijm(6" s 7Tm) Tim
£2(6,1) =log ————— = L*2(6,7,) = Y DimViim|log =——=——= —log — |,
B o350, m] - 2 ,,,ZJ iy log " Ty —log |
where 6;,,,(6, 7,,) = qu{”[@, 8m(6,7,,)]. The only distinction between — log L* and £* is that the latter

is recentered by a constant such that it is zero at the truth (6*, 7*), as shown in the first equality. The
second line reorganizes £* to introduce notation that will be useful in the proofs.

The second term is the (negative) log likelihood of the market share data recentered such that it is
zero at the observed market shares and positive otherwise:

£2(m) = 1og 2O _ 5 fm ) = 3N D sy log 22 (12
m Jj Jm

im[o,806,7)]

which is true for all © € ©. Again, the final equalities present convenient reorganization for the proofs.

m

The same will be true for other such vectors, e.g., 7, s.



The third term @ is the PLM objective function 7 evaluated at § = §(6, 7r), profiling out g:
5 o 1 . 1
9(8,7) = min 7{6,5(6, M} = 5 min | %166, 7) ~ XBII* = 51256, W)

To simplify the presentation of the proof, we take W = (B"B)~! in the second inequality. This
is not restrictive in view of the discussion in section 4.6, which considers alternatives choices of
W, including those needed to use an optimal weight matrix or optimal instruments as described
in section 5.2. Hence P = B(B'B)™'B’ is the projection matrix onto the instruments B and
P =P —Tpox = P — PeX(X" PpX) 71X Pp.12

To see that this formulation is equivalent to CLEER presented in section 3: For any (6',7")
that optimize Q, CLEER (8,5, 8) is then [6',8(6", '), (X" PsX) " X" P38(6', )] because &(8,7) =
ming [8(6,7), B] and £(6,7) = —{logL[6,5(6, )] + log L*[6*,8(6*,7*)] + log L*(s)}, where the
final two terms are constant with respect to the model parameters. Given this, for the remainder of the
paper we will refer to the maximizer of (11) as (6, #) and refer to 7 as the CLEER of market-level choice
probabilities.

To prove consistency of CLEER, we will show that (8, #) converges to the minimizer of the population
analog, Q(6,7) = L™(7m) + £L*(6,7) + ®(6, ), where L) = Zm N, Ej 75?‘,;1 log(ﬂj";n ! Ttm),
£*(6,m) = E[£*(6,7) | A] with A the sigma algebra generated by product characteristics and the
D;,’s,and @(0, ) = || P[5(6, ) — 8(6*, w*)]||* / 2. Note that L™, £*, & are chosen to ensure all are zero
at the truth.

4.2 Identification of Demographic and Random Coefficients

Consistency of CLEER requires that the model is identified. While identification of 7* is straightfor-
ward, we define identification of 6* in terms of Q2 evaluated at the true unconditional choice probabilities
T, ie.

QO, 7)) =L*6, %)+ D6, "), (13)
since L*(7r*) = 0. Clearly, Q(6*, 7*) = 0. While (13) uses 7*, note that £L®(7r) diverges for all 7 # 7*
and so Q(6, m) will aswell. There are two possible sources of identification for our estimator, both may be
weak. Let p*(8) be the rate of £*(8, 7*) and p®(6) be the rate of (8, 7*). Hence, 04(8) := p*(8) +p%(6)
is the rate of Q(6,7*). In the absence of weak identification, for all fixed 6 # 6*, p*(6) ~ Iand
0%(6) ~ M, we do not assume that one of these rates is faster than the other.'* We will allow for weak
identification, which slows the rate of either or both 0*(8) and p®(8) as described below. To obtain
consistency p;q(6) must diverge (fast enough) for all 6 outside a neighborhood 6, = {6 € ©:||6—6*| < €}
of 6* (for any fixed € > 0). However, the terms of p;4(6) need not satisfy our identification condition
individually, which is what gives rise to the conformance property.

Identification from PLMs occurs when ®(6, 7*) > 0 away from 6*. Weak product identification
can slow p®(8) in a manner similar to traditional moment condition models (e.g., weak instruments).
Identification from the micro sample occurs when £%(6, 7*) > 0 away from 6*. This will fail, e.g.,
at 8% = 0 because ¢;;,,(0,6",7*) = 7* for all z;,,, and so £*(0,6”, 7*) = 0 for all 8”.'* Weak micro

identification will occur for 6*Z drifting towards zero.

12The second equality requires X~ PgX be invertible, which would fail if the number of instruments were less than the
number of regressors or the instruments had no explanatory power. In these cases it may still be possible to identify 6*,
but not B*. To cover this, write 2 more generally as P = Pz — PpX(PpX)* with -+ denoting a Moore Penrose inverse.

BIndeed, in the absence of micro data, our estimator will still be consistent even though I does not diverge.

14App. C provides an example and elaborates on the intuition for the identifying power of microdata within our model.



4.3 Assumptions

We are now ready to turn to our formal assumptions, which begin with those regarding micro and
product level identification.

As discussed above, micro identification will always fail if 6% = 0. When 6* # 0, micro
identification will fail if there exists a 6¥ # 6*” such that £*(6*%,6%,7*) = 0, which implies
Gijm(87%, 607, ) = Gjm(6%7,68", %) for all i.'> However, this is unlikely to arise in applications as
this imposes J X |Z| restrictions—which is infinite if z is continuous—and 6" is low dimensional. We
rule out these cases, which we interpret as model misspecification on the part of the researcher, with
the following assumption.

Assumption A (Micro identification strength). Let A = [|6*Z| and let p*(6) = I||6 — 6*|3 with
16 — 6% = ||6% — 6*Z|| + 22||6” — 6*”||%. We have,
. L6, *
seolZs 5
where > means that the left hand side is (element-wise) of greater or equal order compared to the
right-hand side.®
Following the weak identification literature, this assumption allows 6*# to drift towards zero. The

=1,

parameter I22 plays a role analogous to the concentration parameter in the weak IV setting. If 1 > 0,
the norm || - ||; is zero only at 8*. If 4 = 0, the norm is zero whenever 6% = 6*% = 0 (regardless of 7).
Our next assumption essentially defines the identifying power in the PLMs.
Assumption B (Product level identification strength). Define Dy = Jgvd and D, = 0,79 as
the derivatives of the Berry (1994) inversion §(6, r) with respect to its arguments. Let p?(0) =
|[PDg(6%, 7*)(6 — 6%)||? and assume that
OO* +t(0—-0%), 7"
ee@:gyzebo }Qg ( tZ(p‘P(e) ) ) -
The rate p? is analogous to the concentration parameter in the weak identification literature.'”

For identification, p;4(6) = p*(0) + p®(6) must diverge for all 6 outside a neighborhood 0, = {0 €
O: |6 — 6*| < €} of 6* (for any fixed € > 0). Observe that we allow the component responsible for p;4(6)
diverging at a particular value of 6 to depend on the value of 8. While identification per se only requires
divergence, our consistency proof requires it do so at a minimum rate for all & € ©¢. The following
assumption makes this explicit.

Assumption C (Identification). Letx = exp(—41cf5) with K(TS =2, /2(:’5k log M for cz defined in G. Then,
Ve > 0: §i4(e) = infoepe pia(6)>x~12 log’(I + M) > 1. O

This rate should be compared to the rate that would arise under standard assumptions, i.e. max(M, I).
C relaxes this significantly to accommodate a wide variety of relative rates of divergence, accounting
for the size and identifying power of the micro sample, market population, and PLMs. The rate used

here diverges slower than any power of M (times log2 I) but faster than any power of log M; x is slowly

15Tn this statement we can evaluate £*(6*Z,0Y, 7*) at 6*Z since the variation in features is observed. If z;,, has zero
variance then identification also fails because there is then collinearity between z times x and x. This possibility is also
ruled out by A.

165, <, <, ~ are analogously defined.

"There are four minor differences: (1) the model is nonlinear so now the Jacobian depends on parameters; (2) 77 is fixed at
the truth 77* (there is no analog to our 77 in the context of a standard concentration parameter); (3) 8 has been concentrated
out; (4) the standard concentration parameter omits the (BYB)~! in our identity matrix and would include O'é in the
denominator.
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varying.'® So our rate condition is not restrictive.

The next three assumptions deal with sampling of markets, consumers and products. It is possible to
relax these in many directions, but we focus on the standard case.
Assumption D (Markets). Product characteristics, product instruments, consumer demographics
and preferences (X,,;, §15 D> Zims Vs €m) are independent across markets. O

Independence across markets could be relaxed. This would be relevant if e.g. some products are
offered in multiple markets. The bulk of the demand literature assumes independent markets while
incorporating similarities in products across markets by including “brand”, “model” or “SKU” dummies
in x;,,."
Assumption E (Consumers). [i| Consumer demographics and preferences (z;,,, Vi €i.pe) i @ given
market are N, i.i.d. draws from a superpopulation with known distribution G X F X Gumbel’"*!;
[ii] Consumers in the micro sample are I,,, independent draws without replacement from the consumer
population. O

While we assume the distribution of consumer demographics is known and constant across markets,
it is likely to be estimated in practice and could be allowed to vary by market. As a result, E implies
that the micro sample is compatible with the population in the sense of CG23. In app. A, we discuss
ways to relax this assumption to allow for estimation of G and some forms of selection. In many
cases—e.g., when the sample is selected based on consumer choices y or demographics z—these can be
accommodated without adjusting our inference procedure beyond utilizing sampling weights in the
latter case. In other cases—e.g., when sample selection depends on unobserved tastes v;,,,—a model of
selection would be required, as it would be to incorporate selection on unobservables utilizing a GMM
micro moments estimator (Petrin, 2002; Berry et al., 2004a).
Assumption F (Products). [i| The number of products in a market J,,, satisfies: 1 < J,, < J < o0
for J independent of M; [ii| Product characteristics and instruments in a market (Xjms> &m» bjm) are
independent across j and satisfy E(j, | bjn,) = 0and 0 < infy, V(& | bjy, = b) < sup, V(§p, | bjmm =
b) < oo; [iii] Product instruments have full rank, E(bjbjy,) > 0; [iv] The rank of E(bj,x;,,) is at least
dy. O]
The condition on the instruments b, is standard, although we do not place conditions on the dimension
or strength of b;,,, beyond what is assumed in C.If dj, = d,, then p(6) = 0 and PLMs do not contribute
to the identification of 6%, 7*. When dj, < d,, (contra F[iv]), 8* is not identified.

The next two assumptions are technical although (some version thereof) is implicit in much of the
literature.
Assumption G (Tails). [i| The x;,,’s are drawn from a distribution whose support X, is bounded;

[ii] the §j,,,’s are i.i.d. subgaussian with optimal variance proxy (OVP) cg < 00;%0 [iii] the z;,,’s are

i.i.d. subgaussian with OVP ¢; < oo (conditional on A); [iv] the b;,,’s are drawn such that 3Cp, < co:
P[max,, E(||bjml|* | Ny) > Cp] = 0. O
Assumption H (Parameter Space). [i] © is compact and 6* is an interior point; [ii| B, the parameter

space of 8*, is compact; |[iii| I, the parameter space of 7* is Hln\le M,, with M,, = {ﬂm:V j =

181f M were fixed, C is satisfied if §;q(€) diverges at least square-logarithmically in I.

Such an approach is innocuous provided the number of brands, models, or SKUs is small relative to the number of
products, which grows with M under our assumptions. A notable alternative approach is Moon et al. (2018), which
assumes a factor structure on &.

Die. Vt:log Eexp[t(&j, — E&jp)] < c%‘tz/z, which implies that Vt > 0: P(|§j, — E&jp| > t) < 2exp[—t2/(20’£)].

11
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Figure 1: Representation of the parameter space for 7.

1, ...;J;y:0 < 7 and Zj:l Tim < 1}. O

3/4

Assumptions G and H imply (among many other things) that min,, ; 7, > x*'*, as we show in L9(b),

m
which will be helpful for showing that 7, for which min,,, ; 7z, decreasjes too fast cannot minimize Q
(with probability approaching one). However, this does not imply that observed market shares s;,,, > 0
forall j, m.

Finally, in order to estimate market shares accurately, we must assume that the population of markets
grows with the data. Note that this is a significant relaxation over the standard assumption in the
literature since BLP95 that unconditional choice probabilities 7* are observed and equal to s, or
equivalently that N,, = 0.

Assumption I (Population and sample growth). [i| As M grows, the market populations increase
such that pyy = Zm N,,;! converges and p,, = 1 / min,, \/N_m < M~P for some (real valued) p > 0.
Specifically, pn<x'2 / log® max,,(I,, + M). [ii] max,, I, Supee@,||e—9*||,1>o[”9 —0%3 / pu(®)] < 1. O

While we do not assume that observed market shares are equal to unconditional choice probabilities,
I[i] is sufficient to guarantee that ||s — 7*|| converges to zero in the limit. It is weaker than assuming
that a specific market population N,,, grows faster than M.

There are several ways in which I[ii| can be satisfied. One is that the PLMs contain the dominant
share of identification. Another is max,, I,,,/I < 1, i.e. an asymptotically negligible share of the micro
sample is concentrated in any one market.

4.4 Consistency

We can now formally establish the asymptotic properties of the CLEER, starting with consistency.
Theorem 1. Under A to I, CLEER is consistent, i.e., (a) § — 6% < 1; (b) max,, |#, — Tl < 1,
() Vm:||8,, — 8%ll < L;and (d) f — B* < 1. O

We present the basic steps of the proof below with supporting lemmas relegated to app. B.1.

Proof. We first show consistency of 8, with the remaining parameters following straightforwardly
below. For 6, it is sufficient to show Ve > 0:limp/_, o, P[infgeyn Q(6, ) — Q(6*,s) < 0] = 0, since
infr Q(6*,7) < Q(6*,s). Todoso, steps I to 5 show that limy,_, o, P[infgexme (6, 7) — Q(6%,5) < 0] =
0 for M* = Hm Mm%, where [T}, = {7,,,;: min; 7, > x} with x as defined in C. Step 6 extends this result
from [1* to [T.

Step 1. Decompose Q(6, r) — Q(6*, s) by adding and subtracting to yield four terms,
® ® © )

Q6, m)—Q(6*,5) = Q*(6, %) + Q*(6, ) — Q*(6, T*) + L8(7r) — L(s) + AQ*(6, ) — Q*(6%, 5),
(14)

12



where AQ®* = AL* + AdwithAL = £* — L* and AdD = & — .

Step 2. The first two terms on the right-hand side in (14) consist exclusively of population objects.
We note the following properties of these terms atall 6 € ©¢ and all # € [1*: [i] because
Q* = £* + ®isnonnegative, @ > 0; [ii] moreover, by definition, @ ~ p;4(8); [iii] @ + ® =
Q*6,m) > 0.

Step 3. Term (©) is the difference between the macro likelihood term at the candidate parameter
and observed market shares s. We show that this diverges rapidly for 7 far from s. Let o®(7r) =
2, Pm(m) = X Npll$m — 7w, By the mean value theorem (MVT), © = £*(7) > p™(7) /
2 > 0. This follows from expanding £%(7,,,) / Ny, Zj Sjm 10g(Sjm / 7j,,) as a function of s,
around 7,,:

Sjm = Zjm)* _ |7m = Smll®
Zsjmlog— Zl (Sim — Tjm) + 5 ZJ: i > m2 mll_ (15)

Step 4. We will need to show that the nuisance term ©) diverges sufficiently slowly relative to
@ + ® + ©. This is accomplished by showing sufficiently slow divergence relative to @) +
or ©. Divergence rate of ©) relative to @ + (B is controlled by C, while divergence relative
to © is controlled by I. It will be sufficient that SUP gey i |®/pp| < 1, where pp(6,7) =
n max{np;4(6), o™(7)} with 7 = 3, as we show here. Split the nuisance term ©) by likelihood

and product level moment terms and deal with them separately:

© = AQ*(6, ) — Q*(6%,5) = AL*(6, 7r) — L*(6%,5) + AD(B, 1) — D(6%,5).
We show convergence results for each term of © in supporting lemmas: « L2(b) shows
SUPge, e [AP(6,7) / pp(6,7)| < 1; » L2(c) shows &(6*,5) < 1. « L3(b) shows supge,
|AL*(8, ) | pp(B, )| < 1. « L3(c) shows SUP ey rye |£*(6%,5) / pp(6, )| < 1. Taken together,

) _ )

su = sup —=— <1
ot NIAX0(8). P2(T)) ot P(B.7)

Step 5. We now consider two cases, which correspond to whether 7 is close to s or not. In the first
case we consider, 7 far from s, and the macro likelihood—£®(7) in term (©—will diverge fast and
dominate the nuisance term ) for all values of 6, thus guaranteeing that (9, ) diverges for this
case. We then consider the case where 7 is near s. Here, ) will dominate (D) Moreover, Q*(6, 7*)
is well approximated by Q*(6, 7r) and so (B) is negligible compared to @). Again, (6, ) diverges

under this case. These cases are now presented formally:

1. Forall 6, w such that p®(r) > p;4(6)n: pp(6, 7) = nE"(71) < P™(7r). Hence (C) dominates ©O)
or more formally,
sup {16%(x) > pu(@mI 2] <1.
OSxIx
Therefore, since @ + B and (©) are non-negative from steps 2 and 3,
P{ sup 1[e"(r) > pu(@MIQ(6,7) — (6%, 9)] <0} < 1

XK
2. For all 6, 7 such that p™(7) < 0,4(8)n: pp(0, ) = 7?pi4(0) < p;a(6). Hence B dominates
©) or more formally,

sup {n[p'<n> < pu(®)n)] 'g'}

OFXIx
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Moreover, writing ® = [®(6,7) — ®(6,7%)] + [£L*(6, ) — L£L*(6,7*)], L2(a) and L3(a)
respectively show that the terms of (8) are dominated by @) for 7 € [1*. As before, ©) is

non-negative. Combining these,

P{ sup 1[0™(7) < pi(O)][2(6, 1) — (6", 9)] < 0} <L

OfxIx

Combining cases establishes [P’{sup@g [Q(6, ) — Q(6%,5)] < 0} < 1.

X%
Step 6. Finally, 14 extends the above results from [T* to [1. The intuition for this step focusing on a
single market is illustrated in fig. 1. Fig. 1 depicts the parameter space for choice probabilities in
market m, [1,,,; the subset [T}, for which we have already shown consistency above, and a further
subset [M,7. L9(b) (using G and H) shows that [T;7 contains 75, with probability approaching
one. As the arrows indicate, [T, and 1%, both increase to [1,, as M — co. To complete this step,
we must show that candidate 7,,, & 1%, (the blue band) are sufficiently far from 7, (which is
inside the green circle). 14 establishes that this distance (bounded by the maize band) shrinks
sufficiently slowly such that the macro likelihood £™ dominates the other terms in (2 and diverges
faster than Q(6*, 7*). The proof establishes this for the entire parameter vector 7z, which ensures
uniformity across markets. Thus, (with probability approaching one) no 7z & [1* can optimize
Q(6, ) over OF X M.
This completes the proof of consistency of 8. L5 uses consistency of 6 to establish consistency of the

remaining parameters 7, 8, 5. O

4.5 Asymptotic normality
Having established consistency, the following theorem establishes that the CLEER of consumer
heterogeneity @ is asymptotically normal. Once this is established, normality of the remaining
parameters are straightforward and we address them immediately following the proof.
Theorem 2. Under A to [, for [y := Qpp™V2 := (Qgg — Q9 27k Qr0) V2, 1510 — 6%) 4 N(0,1%), for
1% given in L8. O
The formula for 1} simplifies to the identity matrix if the likelihood portion of the objective function
dominates asymptotics for 8. If (B"B)~! is the optimal weight matrix then 13 = I, also. As suggested in
section 4.6, instruments can always be chosen to make (B*B)~! the optimal weight matrix. The formula
for Qg is the familiar Hessian with respect to 6 with 7 concentrated out.
Theorem 2 uses a self-normalizing matrix [, akin to dividing by the standard error to arrive at
a pivotal T-statistic in linear regression (e.g., Student, 1908), because different elements of § can
converge at different rates and those rates depend on the data generating process. This is a feature
of the conformance property. We discuss this issue in greater detail and provide rates for individual
parameters across all cases in section 5.
Proof (theorem 2). The proof proceeds over five steps with supporting lemmas in app. B.2.
Step 1. Let Q* = £* + &, so that Q(6, ) = Q*(6, ) + £L"(r). Consider a quadratic expansion
of F(6,,y) = Q*(6, ) + £™(y). For generic vg, U, lett € [0,1] index a convex combination
between (6%, 7%, s) and (6™ + vg, 7* + U, 7 + v;) and define,
f(t) = F[6(t), (1), y(1)] = Q*(8* + tvg, m* + tv,) — Q* (0%, m*) + L[ 7* + tv, + (1 — ) (s — 7%)].
Thus, f(1) = Q*(6* + v, T* + v,) — Q*(6*, %) + L™(7* + v,) and £(0) = £%(s) = 0, L2(s) = 0,
(0) = (v QY + vy Q3)(6*, 7*), and
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ﬂ?”(t) = (UZQ@@U@ + 2U7VTQ7T609 + l.)Z[.();17-[1.)7-[)(6"E + tug, T + tv,)
+ [vn' - (S - 71'3“)]vl-i,m*[ﬂ'a‘E + iUz + (1 - t)(S - 77*)][1)71' - (S - 71'*)]

Applying the MVT to f, for some i € [0,1], f(1) = f(0) + (0) + (£) / 2 = F(0) + () / 2.
Now substitute in vg = I'ghg and v,; = ', h,; for symmetric matrices I'g, I';; and vectors hg, h,, to
obtain

Q*(6* + Ighg, m* + I'yhy) + L™ + Iphy) = (hyTeQg + hyl . Q3)(6%, %)

1 A A A o o
+ 5 ((h3ToQeoToho + 2T ch 2ol oho + Ml Qr (6, ()]

+ [Iehy = (s = 7 L[y DT chy — (s = 7)]). - (16)
Based on this expansion the proof proceeds in the remaining three steps. Step 2 shows that the
final term of (16) is well approximated when we replace sample objects evaluated at (9, 7, y)(f)
with population objects evaluated at (6%, 7*, 7*), yielding (18). Step 3, minimizes (18) with
respect to A to arrive at an asymptotic approximation of I'y 1(6 — 6*). Finally, step 4 applies a

central limit theorem to establish normality.

Step 2. Defining everything at the truth, let A := plim oO(BVB [/ M),

Z = plim[D}PB(8"B)""] = plim [ (B;Z’B) 1)
En = 51_1)1110(59715;%013’3(?3)‘ ) A%ILI?O[LQ”A””D BA—I(B;ZJB)A*],

and & = Eg — 5. L6 shows that for I'; = [E(Lgg — Loz L7rLre) + ME. =717 and r, =

(E[Lr — Lrelislor]} ", the following hold for ] = sup,.,.._, IAX],

ma HFe{Oee[e(f),ﬂ(f)]—ﬂse}Fe <1, (17a)
max Hre Qo [6(D), (D] — QI < 1, (17b)
max ||r O [6(H), m(D)] — Q| < 1, (17¢)

max ||r m (D] - Lo, < 1. (17d)

This allows us to replace all the hatted second derivatives in (16) with their population counter-
parts at the truth. This, with some algebraic manipulation, transforms the right-hand side of (16)

into (evaluating everything at the truth),
1 A A
E(S — ) LR (s — %) + {hgTeQg + hyl[Qf — L8 (s — 7%)]}+
1
5 (R5TeQealohs + 2h L7 Qrglohe + WLz Qunlchy). (18)

Step 3. Note that (18) is a quadraticin hg, h,. Thus, h* = (h3, h};) ~ [Fe_l(é — 0%, Iz (% — 7%)]
is the solution to,
I'eQgel’y I'gQorl'y h}

. )1 v v
mini=(s—7*)" LR (s—7*)+h
h 2 7T7T Fﬂ'Qn'@FG Fr['Qran'

Q)
N e. 6 . l + % W
[ Qf — LR7(s — %))
Applying the partitioned inverse formula,
=200 =g
1A Ax _ -1 ; RPER n
516 —6%) = —[I'e(Qep — Qo2 277270) o] {Ia| Qo — Qox Q7 (25 — LR (s — 7%)]}.
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We apply L7 to show that the denominator term I'yQggl g converges to an identity matrix. Then,
d
L8 shows that the numerator term I'p.gg — N(0, V).

Step 4. Finally, L6 implies that '35> 2, O
Theorem 2 can be extended to cover asymptotic normality of linear combinations of CLEER estimator
of (B*,0%,5%).

Lemma 1. For any conformable matrix A for which limy,_, ,(A¥A) = [ and matrices /1, A presented

inapp.J.1,
g-g7]  [FE]
(AvjA(—lA)—l/ZAV é _ e* ~ AV 'CAQ g N(O’ [|)_
§—8* Ly O

The proof of L1 is similar to that of theorem 2 with the main wrinkle being that we need to use the
delta method with the dimension of the argument increasing with M: see app. J.1 for the proof. L1
makes inference on linear combinations of CLEER estimates straightforward.?!

4.6 Choice of W

We now return to the choice of weight matrix. In defining the sample objective function in section 4.1,
we assumed W = (B”B)~! which is convenient as it allows for straightforward analytical expressions
when profiling out .

As noted, the choice of W is (asymptotically) immaterial for the estimation of 6* if asymptotics come
from the likelihood portion of the objective function. In other cases, it matters only for the asymptotic
(JW) is positive definite.

A choice for W that is made intuitive by the optimal weight matrix discussion in the GMM literature is
W = (B"V¢B)~!, where V is such that BY V¢B/J LA E(&%,bjmbjy,)- For instance, for heteroskedasticity

robust inference, Vg could be a diagonal matrix with elements %m, where f jm is aresidual from a first

variance of 8, not for its consistency, provided that plim,,

step estimation and V; a matrix with diagonal elements V(§,, | bj,,). Such a two-step strategy can be

used to achieve efficiency in the sense of either section 5.2.1 or section 5.2.2 as detailed there.
Theorem 2 already allows for this possibility since in that theorem we can redefine the instruments

B = 1751/23, which results in the PLM term [6(6, ) — Xﬁ]%—l%ggm[a(e, ) — Xf]/2. With this

adjustment the proof will go through provided the matrix 175_1/ 2 is explicitly incorporated throughout,

which is trivial in view of F/[ii].

5 Conformance and Efficiency

5.1 Conformance
The intuition for conformance is most readily apparent by examining the Hessian of the population

objective function €2, introduced in section 4.1, evaluated at the truth,

5292 éz@v ézﬂ 0 0 0 (Dezez ¢@z@v (pezﬂ—
H.Q = HE’ + HL' + H‘I’ = Lévez 'Cévgv Lévﬂ +]10 O 0 + @@v@z @evev ¢@v7-[ . (19)
;1'92 ;ZGV ’C;'HT 00 ’67-1'71' ¢ﬂ62 ¢nev CD,m

Up to negligible terms, I3 defined in theorem 2 is the top left two-by-two block of Hg'.
The entries of the block terms of (19) diverge at different rates. Moreover, any individual term can be

singular. Conformance obtains because CLEER is asymptotically normal and converges at the optimal

HIn practice, if the weight matrix is chosen as is suggested in section 4.6, standard errors can be computed from the inverse
hessian of the objective function (5), otherwise the sandwich analog should be used.
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rate whenever the sum of the terms is invertible.

While the middle term, H ;a, is not a function of 6, it provides key identifying information on 7z*. The
first and last terms of (19) correspond to the two sources of identification for 6* discussed earlier: micro
data and product level moments.

Micro identification arises from H... Under strong micro identification, H.. has full rank. As
discussed above, a failure of micro identification occurs when 6*# = 0, a consequence of which is that
the red entries in H. are all 0 and H;. + Ha is singular. To see this, consider for ease of notation the

case where 67 is a scalar and x},, represents the product characteristic on which the random coefficient
appears. Then,

£6V6Vm(e*’ ”;1) = [E(x;}rlv(w?m - W?nQ:n_IQ;m)M?rEI(W?m - W:n@:n_lQ;m)x% A)’
where M, = diag(7},) — i Tims Qi = S WindE,, WS, = [ 2, vdF,, with %, = diag(3},,)—35mdim

i im’tim>» m m im*im

where 77, = . (6%, ), 8im is avector with elements 4, (i, v; 6, 6). Further, Wy, Q;;, are W}, Qf,

integrated over demographic characteristics. When 6*? = 0, 75, = 7. It follows that W}, = W}, ,
Qy, = Qj,, and hence Lgvgv,, (0%, 75,) = 0 for all m and H. + H e is singular, the red case in (19)
noted above. Weak micro identification corresponds to the case where 6*Z is close to zero and hence
H. + Huis nearly singular.

Product identification arises from Hg. As with conventional GMM, identification depends on the
number of instruments relative to the number of parameters to identify. Suppose the number of
instruments in b is less than or equal to dg. Then, @ and Hg are both 0 and product moments do
not aid in identification of *. Additional instruments provide identifying power, and if d;, > dg + dg
then in principle all parameters can be estimated d la BLP95 (i.e., without relying on the micro sample).
However, as in BLP95, it is necessary to supplement ¢ with additional restrictions on 7 to achieve
identification, since d,; = J > dj, for all practical purposes. Most of the literature accomplishes this
by constraining 7z to match observed market shares s following BLP95, introducing J market share
constraints. In CLEER, the additional restrictions come from £™®, so product identification obtains
when Hqa + Hg is invertible. We further note that the instruments b may be weak, analogous to standard
weak identification in GMM (see Stock et al., 2002), resulting in H .« + Hg being nearly singular.

CLEER’s asymptotics are driven by Hy = H;. + Hyu + Hg rather than Hye + Hyw Oor Hew + Hg
individually. The rates of convergence of the elements of CLEER can differ and will correspond to
the fastest rate of divergence among the three terms (entry by entry). In the best case, both micro
and product identification are strong, and these rates depend only on the number of observations
used to construct £*, £}, and @, which grow with the number of micro consumers I, the market sizes
{N,,}, and the number of markets, M, respectively.?? In general, the convergence rates will also depend
on identification strength. The following subsection will focus on strong identification; we expand
our discussion to the general case allowing for weak identification strength (drifting) parameters in
section 5.1.2.

5.1.1 Strongidentification. This section focuses on the case when the micro identification parameter

A = ||0*%]| > 0is constant and we have dj, > dg + dg strong instruments. This is sufficient, but not

22As is standard for GMM, @ is an inner product of moment vectors which are sums over all J products. By F, J increases at
rate M, the number of markets.
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necessary for strong identification.??

>
>

Case 6 R Om B Parameter Rate

M=<I<N, VI N, I M & max(V1, 1/ M¢3)

M =< Np =1 VI VNm VN VM v second fastest of

I<M<N, VM N, M M JINTEA Mg, Yo

I<N,<M M +/N, N, VM A V

Np<M=<I VI N, Nn. VM m o NVNmo
Om min(4/N,,, rate of 6)

N,<I<M VM +N, N, M " )
¢ min(y / M@}, rate of 6”)

(a) Convergence rates under strong identification (b) General convergence rates

Table 1: Convergence rates comparison

Tbl. 1a displays the convergence rates of each component of CLEER under all relative rates of
divergence of M (the number of markets), I (the micro sample size), and N,,, (the market population).
Because of strong identification, 67 and 8” diverge at the same rate across all cases. The rate is the faster
of \/7 and \/Z\_/I , which correspond to (the square root of the) rates of divergence of £* and & respectively;
the term that diverges at the slower rate is asymptotically negligible. Choice probabilities, 7,,, always
converge ata \/N_m rate as it can be estimated off £®, which diverges at rate N,,,. While micro data may
improve efficiency of 7,,, it does not improve the rate as 7, is market specific. 3, can be estimated
from @ and 7, via the delta method. Therefore, it converges at the slower rate of these two estimators.
§3 always converges at the rate \/]\_/I ; it cannot converge faster than the infeasible IV estimator which
treats §* as known. Although §,,, may converge at rate slower than \/]\—/I (i.e., rows 4 through 6 of tbl. 1a),
f maintains the \/I\—/I rate as it depends on a (weighted) average of the 77,,,’s, thereby reducing its variance.
5.1.2 The general case. The convergence rates of CLEER elements in the general case are summarized
in tbl. 1b. In general, weak identification or failure of identification may arise from either the micro
sample or the PLMs. CLEER natively conforms to the identifying power in the data without pre-testing,
which is important for applied work. Recall that weakness of micro identification is parameterized by 4
drifting towards zero. For the PLMs, we consider three concentration parameters: one for 5*, one for
(6*”, B*), and one for (6%, 8*).?* There are three because having more parameters to identify requires
more and stronger moments. We denote the smallest eigenvalue of each concentration parameter as
M¢3, Mgy, and Mg, respectively.

The convergence rate of 77, is unaffected compared to section 5.1.1. Turning to 6, we see that in
general the rates of 8% and 8” can differ. 8% converges weakly faster than 6”. When CLEER estimates
0*Z off £*, it uses the micro data and effectively takes deviations from ‘averages, and hence the rate of
67 cannot be slower than \/} . However, the convergence rate of 67 cannot be slower than \/M_q% , either,
since with sufficiently many strong moments, CLEER estimates 6*Z off the PLMs.

Now &”. Note thatI > I2and M¢2 > M ¢% by definition. Any of the rates for 6”in tbl. 1bcan be second

*Strong identification may also be obtained with only dj, > dg + dg» strong instruments if I grows sufficiently fast. This
case will be covered in section 5.1.2.

24A concentration parameter is a “measure of the strength of the instruments” (Stock et al., 2002). In our context, the
concentration parameters are (up to immaterial constants) E(A” | Z)ZZ E(A | Z) forA = X,A = [X D},], and

A=[X D}, D}J.] respectively.
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fastest:> (1) The rate \/ﬁ obtains if the micro data contain sufficient identifying information for the
random coefficients to make the PLMs redundant for the estimation of 6*, i.e.if I > I2* > M¢2 > M¢3.
(2) We get the rate \/M_qb,z, if 1> M¢2 > 122 + M@} because 6* is then (asymptotically) estimated off the
micro data only, and 6*” off the PLMs. (3) Third, the rate is \/7 if M¢2 > I > M¢3+ 12> because both 6*Z
and 6*” can then be estimated using a combination of micro data and product level moments, with the
convergence rate no worse than the slower of the two. (4) Finally, we get \/M_q.’% ifM@¢2 > Mg > I = I
because the estimator then only uses the PLMs to estimate 6*. Since it needs more of them, the smaller
concentration parameter applies.

In section 5.1.1, we noted that the convergence rate for 8,,, depends on the rates of § and 7,,. Because
in the general case 6” can converge more slowly than 87, the rate is now the slower of that of 8” and 7,,,.
Although § depends on both 8 and {#,,}, its convergence rate is the slower of \/J\_/I and the convergence
rate of 8” because it depends on a (weighted) average of the 7,,’s, thereby reducing its asymptotic
variance.
5.2 Efficiency

Conformance establishes that CLEER converges at the optimal rate under general conditions. To be
efficient, CLEER must further achieve the smallest possible variance at that rate. If the likelihood is the
dominant term in the objective function then efficiency of 8 follows directly from maximum likelihood
principles. Only if the PLMs contribute, i.e. if M¢? > 112, does the choice of instruments matter for
efficiency of 8. Moment condition estimators typically operate under two distinct notions of efficiency
based on the form of moment conditions. We cover both in the following two subsections.
5.2.1 Unconditional moment restrictions. In this section, we discuss efficiency for a given
instrument vector bj,,. Since this notion of efficiency considers only unconditional moment restrictions,
we relax F[ii| as follows,
Assumption J (Products: Unconditional Moments). Product characteristics and instruments in a
market (Xj,,;, §m» bjm) are independent across j, satisfy E(bj,;,,&jm) = 0. O

With this assumption, CLEER achieves efficiency when the standard optimal weight matrix from
GMM is used for W, i.e. W is chosen as suggested in section 4.6. To see this, it is convenient to first
consider the gradient of the CLEER objective function (5),%¢

Ogrh” Wi
—dglog L . (20)
—05log L + dsmh” Wi

We first show asymptotic equivalence of a GMM estimator using this gradient to the GMM estimator
defined as

AW o 7
arg min 1 [mv By~ logL] [ 0 l [ " , (21)

305 2 Wy ||y logl

where ¢ = [67,8"]" and W, = (=3, log ﬁ)_l evaluated at the solution ¢ of (5).27 Note that in (21)

there may be more moments than parameters. Specifically, (20) has dg + dg + ds moments, whereas

ZFor the sake of ranking, ties are kept, e.g. if A = 1 and I > M then the second-fastest rate is \/ﬁ = \/7 .

Z6While the majority of this section makes use of the objective function described in section 4.1, which is convenient for
theoretical reasons, here we use (5) because §*, not 7* is a parameter of interest; the substantive argument is equivalent
since & = 8(0, ) is invertible in 77.

27We define Wy, in terms of (5) in case its gradient (20) is zero at multiple points. Despite their asymptotic equivalence,
there are two reasons to prefer CLEER to the GMM estimators described in (20) and (21). as we detail in section 6.1.
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(21) is based on d, + dg + ds moments. Under exact identification of (21), i.e. if d;, = dg, both (20)
and (21) are equal to zero if 772 = 0, dg log L. = 0, and d5log L = 0. In the case of overidentification, the
gradient of the objective function in (21) is
a1’ Win Og,
0d, + | Ogyv log LW, 6y logL |, (22)
a5’ Wi 85,7 log LW 8y log L

which yields (20) at the solution since W, = (—6¢¢v log ﬁ)_l, establishing the equivalence of these
estimators.

The remainder of this subsection establishes that (21) is efficient when we weaken F[ii] to J. First, by
the law of iterated expectations, at the truth, the off-diagonal blocks are zero, because

[E(% log L mv) = [E([E(a¢ loglL | x,£) m") =0,

where the second equality follows from the the likelihood principle applied to the choice problem
(without PLMs).?® The intuition for this result follows from the fact the inner expectation is over the
consumer level variables z, y, whereas z, y do not enter the PLMs. Moreover, —W; is the scaled inverse
information matrix of the choice problem and we assumed W is the appropriately scaled optimal weight
matrix of the PLMs. Therefore, this choice of weight matrix is optimal (when replacing F[ii| with J).
5.2.2 Optimal instruments. If the PLMs do not contribute asymptotically to the estimation of 6,
then CLEER @ is fully efficient independent of the choice of weight matrix or instruments. Efficiency
of 8 will require the use of optimal instruments, as it always relies on PLMs. If the PLMs contribute
asymptotically to the estimation of 6*2° then full efficiency requires the use of optimal instruments
to fully exploit the conditional moment restrictions F[ii] (Chamberlain, 1987, C87).3° As always, the
optimal instruments would have to be estimated.

A novelty of CLEER is that such instruments must incorporate both the score and the Hessian of the

where (as defined in section 4.3) Dg,,, = 9gv01> Dyeyry = 0,7 8, and Ve, = V(& | Ba)-
In app. D we show that CLEER using these instruments and W = (B°Ptv17§B°Pt)‘1 achieves the

semiparametric efficiency bound for (6%, 8*). This can be implemented following section 4.6, such that

loglikelihood, specifically,

W is compatible with theorems 1 and 2.3

%Note that the expectation of the score of log L given x, & is for y = [37,6",5"]” under random sampling equal to

xg)

(z lema z - 2(1_ D)3, zajm

m=1i= m=1i=
%_/

(2 ZDlmZ lJlm aZlm+ZZ(1_ lm)JZ(l_ 1m) ljm YGJ””

m=1i= m=1i=

=1 =1

X, §)
2Under strong identification this would occur if M > I.
30As always, going from conditional to unconditional moment restrictions can result in a loss of identification. Optimal
instruments use the local curvature of the objective function at the truth. Away from the truth, they only enforce the
restriction E[g(b)a] = 0 for one function g, which does not imply E(a|b) = 0 globally, which would be equivalent to
E[g(b)a] = 0 for all functions g.
3Unlike in the standard case, where the choice of a weight matrix is immaterial as optimal instruments provide exact

identification, CLEER must use the optimal weight matrix (Zm Bf};tv ngB(,),‘:t)‘1 to achieve the proper weighting of
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6 Comparison with Alternative Estimators

To clarify the contribution of CLEER, we now relate it to other estimators used in the discrete choice
literature.

First, as noted above, with I = N, log L simplifies to the mixed logit loglikelihood. If I < N, the only
difference is that log I exploits the market share data via the macro term. This is particularly useful
when M is large relative to I, since then there would otherwise be an incidental parameters problem in
estimating §. More generally, market share data can dramatically improve the precision of the estimator,
asillustrated in fig. 3 of Grieco et al. (2023b).

The other major class of estimators used in applied work consists of share constrained GMM
estimators (e.g., BLP04; Petrin 2002; Grieco et al. 2023a).>> The remainder of this section shows how
CLEER can be converted into members of this class of estimators. There are four basic steps: using the
score of CLEER to construct an asymptotically equivalent GMM estimator (section 6.1); restricting & as
a function of 6 to enforce the constraint s = o(6, ) (section 6.2); replacing non-linear moments relating
to the derivatives of log L with approximations that can be simulated without bias (section 6.3); and
integrating moments over z to arrive at moment restrictions that can be employed without access to
the underlying micro data (section 6.4). We provide a schematic figure of these steps in app. E.1. Since
CLEER is conformant and efficient, we will point out losses of conformance and efficiency along the
way. There may be a trade-off between efficiency and computational tractability that justifies using
an inefficient estimator. We discuss these trade-offs. One should keep in mind that computational
resources tends to be less costly than data. We argue for the computational tractability of CLEER in
app. G.

6.1 Step 1: A GMM version of our estimator

Insection 5.2, we presented a GMM estimator (21) which is asymptotically equivalent to our estimator,
assuming that (21) does not lose identification; as we pointed out in section 5.2. Going from minimizing
the objective function (5) to setting its derivatives to zero can lose identification due to the existence of
multiple (local) optima.

For equivalence to obtain, it is essential that the %47, and W matrices used in (21) have the norming
indicated in section 5.2: unlike in standard GMM the convergence rate of the GMM estimator can be
affected by a poor choice of weight matrix. The reason for this is that one set of moments entails a sum
over consumers whereas the other is a sum over products.

GMM estimators are often used to avoid parametric distributional assumptions, however this
rationale does not apply in this case. Indeed, GMM estimators discussed in this paper also use
the distributional assumptions on v, € for the moments, and ¥ in (5) similarly avoids distributional
assumptions on &.

This GMM estimator has an important computational disadvantage: moving from the likelihood to a
quadratic function of the score as the objective function replaces the computational tractability of the
logit kernel in the mixed logit objective with an a more complicated loss function with respect to the

underlying parameters, especially the high-dimensional §. In practice, this increases the occurrence of

likelihood and GMM terms.

32An alternative class of share constrained micro likelihood estimators (e.g., Goolsbee and Petrin, 2004; Chintagunta and
Dube, 2005; Train and Winston, 2007; Bachmann et al., 2019) also derives from our estimator by only imposing share
constraints on our estimator without recasting it as a GMM problem as described by the dotted line in Fig. 10.
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local optima and saddle points of the objective function, making the estimator difficult to compute and
verify. In fact, the next step is driven by addressing the computational complexity introduced here.
6.2 Step 2: Imposing share constraints

To resolve the dimensionality issue in (21) one can impose share constraints, 7 = s.>* Following
the intuition of Berry (1994), this means one can effectively replace the unknown 7* with data and
consequently treat §(6, 7*) as a known function of 8. Doing this allows one to replace optimization
over § with computing a fixed point of a contraction mapping to enforce the share constraints.>*

Three issues arise when imposing the share constraints. First, because it is a one to one mapping on
the interior of the probability simplex, doing so rules out the presence of zero observed shares. Second,
imposing the share constraints introduces a potential loss of efficiency. Third, and most importantly,
assuming s = 7* will invalidate standard inference unless the total number of consumers in all markets
is negligible compared to the square root of the population in the smallest market. We provide a full
discussion of these issues in app. E.2.

6.3 Step 3: Adjustments to Likelihood-based Moments

One motivation for using a GMM estimator is to apply the method of simulated moments (MSM)
rather than simulated maximum likelihood. With the MSM, the simulated moments have mean zero
at the truth, regardless of the number of simulation draws. Consequently, as Pakes and Pollard (1989,
PP89) and McFadden (1989) have shown, the MSM estimator has a mean zero normal limit distribution
whose convergence rate is the square root of the slower of the total number of draws and the number of
observations. For example, if the number of draws per observation were fixed then the total number
of draws grows proportionally to the number of observations and the convergence rate is the square
root of the number of observations, albeit that the asymptotic variance would then be greater. However,
the derivatives of the simulated log L do not have mean zero at the truth since they are nonlinear in the
simulated integrals. Step 3 replaces the score of the likelihood with approximations that are able to take
advantage of the linearity property. This results in a loss of efficiency in return for less computational
cost for a given level of numerical (as opposed to statistical) accuracy.

We can focus on the micro score because the macro score in (7) is equal to zero if observed shares
are equal to choice probabilities, which we imposed in section 6.2. We can ignore the double counting
discrepancy in the micro score between (7) and (8) because the micro score has mean zero in both cases.
So we will work with the micro score in (8).

6.3.1 Approximation of 6 moments for linear simulation error. We first consider the micro

score of (8) with respect to 62kd) i e,
M Nm Jm ).

> ”’Lf,’jm f Sim(Zims V)Xo Ze Zkazlmakm(z,m,v))dF(v) (24)

m=1i=1 j=0
which is a ratio of two 1ntegrals due to the presence of ojnl1 in the denominator. A commonly used

approximation to the score can be found by setting v = 0 selectively as follows: Continuing from (24),

Im
% %" sz D ./‘/‘s]m(zlm,())( Xim lm k= 1xll§m lmékm(Zlm,V))dF(V)
m=1i=1j=0 e S 3jm(Zim, 0)AF (v)

33Share constraints can also be imposed on log L directly, see fn. 32.
34The underlying estimator is the same whether this mapping computed in the inner loop a nested fixed point (BLP95) or
jointly when computing the estimator as in MPEC (Dubé et al., 2012), so this distinction is unrelated to our discussion.
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Nm m Jm

M
= z Dlm(z YijmX Jm lm Zkazzmo'k ZyUm)

m=1i=1 Jj=0 k=1
\_,__/
N =1

M Jm
Z Z Z Dlm(yl_]m ) Xim lm’ (25)

where the final equahty follows because we can reindex the final summation and x,,, = 0 by definition.

3

The final line of (25) matches the correlation of demographics and product characteristics in the
micro sample to that of the model. This moment is commonly used in applied work, see CG23 for a list
of examples.* A convenient feature of this moment is that it is linear in g nilm, its only approximated
object, so it can be approximated without simulation bias if one uses Monte Carlo integration. However,
since the share inversion is a nonlinear transformation of a simulated object, the number of simulation
draws required in the computation of §(6, s), which is an argument to ;,,,, must diverge faster than I to
avoid affecting efficiency and necessitating a different inference procedure,*® and at at least the same
rate as I in order not to affect the convergence rate.

6.3.2 Handling 6” moments. The micro score of (8) with respect to 6”(%) is similar to (24), replacing

z& with VK in the integrand, i.e.
M Npy Jm y,
iym
Z Z Z Dlm zjlm '[Ajm(ZIM’V)(x V - Z kav Akm(zlmav))dF(V) (26)
m=1i=1 j=0

However, the above used approx1rnation is not useful since the integral would simplify to zero.

There are at least three ways of dealing with this issue. The most common in the applied work is to
simply drop the score with respect to 8” and rely on PLMs for identification. As discussed above, doing
so may slow the rate of convergence of 6” from \/7 to \/J\_/I .

A second alternative employed by e.g. Berry et al. (2004a) and Grieco et al. (2023a) is introducing
second choice data based on surveys of consumer purchases to construct alternative moments. CLEER
could accommodate second choice data efficiently by including it directly in the likelihood. There are,
however, two potential issues with second choice data. First, surveys rely on consumer responses rather
than revealed preference and can be sensitive to selection issues due to low response rates. Perhaps
more importantly, such data is often prohibitively costly to obtain. If such data were available, it could
easily be exploited by an extension of our estimator employing an exploded logit (Allison and Christakis,
1994). However, analysis of this estimator is outside the scope of our paper.

While we are unaware of its use in the literature, there is a third possibility that utilizes two
independent v draws per simulation r. While not efficient, such an estimator would be conformant and
avoid simulation bias. We descibe this estimator in app. E.3.

6.4 Step 4: Population statistics instead of micro data

One may further alter the moment described in section 6.3.1 by integrating (25) over z,

M Jn
Z Z( ZDlmyl_]m imZ 1dm /O}mxjmzddG(Z)) (27)
m=1 j=0 mi 1

This is the moment described in BLP04, eq. 8, and Gandhi and Nevo (2021, eq. 4.4).

3Discretizing either z;,, or Xjm will lead to two other popular classes of moments discussed by CG23 namely Elzim|j €
J(xjm)] or E[Xjm|i € 1(zip)] for some sets of products or consumers defined by their characteristics or demographics.
The discretization may impose a further loss of information. Note that applied work often conditions these moments on
making an inside purchase; alternatively, one could define X, = 0 and use an unconditional moment.

360therwise, there would be an extra term in the moment due to the error in simulating &, i.e. there would be one term with
6 and one expansion term involving the difference between simulated and actual values of 6.
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There are two possible motivations using (27) over (25). The stronger is that it is less data intensive
in that it may be computed using only statistics of the micro data. For example, Sweeting (2013) uses
data from a survey conducted by a third party that reports averages at the market-demographic level
which correspond to the minuend in (27). The subtrahend in (27) does not involve a sum over observed
consumers. Therefore, (27) can be applied without direct access to the micro data. There is also a weaker
motivation in terms of relaxing computational effort: Since (27) targets a population statistic, it can be
approximated by an integral over the choice probabilities without simulating individual (for each i in a
micro sample) objects. However, in view of PP89, the total number of simulation draws needed is the
same in both cases. To simulate (25), we need only a finite number of simulation draws per consumer
in order not to affect the convergence rate, as long as all draws are independent, whereas for (27) one
needs a number of independent draws that is at least proportional to I.

Using (27) over (25) has an additional efficiency cost. In particular, (27) does not exploit the consumer
level data in the second term because it does not condition on z;. It is straightforward to show that the
variance of (27) weakly greater than (25). For ease of notation, consider the single market case with x, z
both scalars and let w; = ij o Dixjyijzi. The moments in (25) and (27) (if evaluated at the truth) have

the same Jacobian in expectation. The variance contribution for observation i using (27) equals
V{w; — E(w; | D;, X)} = EV(w; | D;, X) = EV(w; | z;, Dy, X) + EV{E(w; | z;, Dy, X) | Dy, X}
> EV(w; | z;, Dy, X) = V{w; — E(w; | 2, D;, X))},

which is the variance contribution of observation i in (25). These two facts combined with the sandwich
formula for the asymptotic variance of the GMM estimator imply that using (25) dominates (27).

7 Monte Carlo Experiments

This section presents Monte Carlo simulations across a number of different settings to investigate the
performance of CLEER and illustrate the practical importance of conformance in applied work. To do
so, we compare CLEER with two non-conformant estimators: First, we consider an estimator that uses
product-level information but does not fully incorporate the information in the micro data. Specifically,
we use the GMM estimator described in section 6, which enforces the share constraint (section 6.2),
drops moments relating to the score of log L with respect to 8” (section 6.3.2) and utilizes the correlation
micro moment (27) to approximate the score of 6% (section 6.4). We will refer to this estimator as “GMM
Micro Moments,” or simply as GMM-M.?” Second, we consider the MDLE introduced in section 3.1.
This estimator underutilizes product level exogeneity restrictions. Recall that MDLE is a two-step
estimator that first estimates (6*,5*) by minimizing — log L, and then estimates §* by minimizing
#(B, ). Thus, product level moment restrictions are not used in the estimation of 6*. As we detail
below, we use the same instruments to specify ¥ in all three estimators.

We compare these three estimators’ performance as we vary the following aspects of the data
generating process (DGP): (a) The size of micro data sample available, which impacts the amount
of micro information available; (b) The number of markets (and hence products) in the data, which
affects the amount of product information available; (c) The underlying 6* parameters; the magnitude
of 8*Z directly influences the strength of micro information and the magnitude of 6*” the strength of
the PLMs; (d) The strength of the product level instrument for an endogenous characteristic, which
impacts the strength of PLMs, but has no effect on the amount of micro information.

37We implement GMM-M using the pyblp package, version 1.1.0 (Conlon and Gortmaker, 2020, 2023).
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To summarize, varying these settings affects the relative power of the micro observations and product
level exclusion restrictions for estimation of the random coefficients 6*”, which affects the precision of
all parameters of the model. Throughout, we will compare CLEER, which efficiently utilizes both these
sources of identification, with the two estimators that emphasize only one. Finally, since likelihood
estimators can suffer from numerical bias, we perform a final comparison of CLEER and GMM-M
when 6*” is large and this bias is likely to be most severe.

7.1 Monte Carlo Design

This section provides an abbreviated summary of our Monte Carlo design. See app. H for a
comprehensive overview of the design and implementation details.

Our data generating process (DGP) includes two observable product characteristics (x} Xjms> X 2 )' two
demographic characteristics (z},,, zZ,). Mean product quality is specified as &, = B& + ,8 m T
iy xjm + &m> The unobservable product characteristic , is also distributed as a standard normal
independent across j and m. One of the observable product characteristics, x', is correlated with
unobserved characteristic &j,,,, and thus endogenous; the strength of the instrument is governed by
the design parameter a. (See app. H.1 for the precise specification). The remaining characteristic x2 is
exogenous. Consumers have observed (if in the micro sample) characteristics, z;,,, = (z},, z%,) and
unobserved characteristics v;,,, = (v}, ¥3,,) which are independent and drawn from the standard normal
distribution. Preference heterogeneity is parameterized according to i, im = 92z}, X} Xjm + 657z 2 sz,
and wim = 67V}, X1 + 6570, X ..

In addition to the instrument b! for x! as well as a constant and the exogenous characteristic x2, we
utilize three additional “BLP instruments” in y constructed from product characteristics: We construct
two differentiation IVs for x!, x? following GH20 allowing for the fact that x! is endogenous (see
app. H.1); finally, we include the number of products in the market (which varies across markets).
Consequently, d, = 6 > dg = 3, so ¥ is overidentified for 8* and the extra exclusion restrictions are
potentially useful to identify 6*.

We organize our experiments around a baseline specification of the data generating process, described
inapp. H.2. Except where they are explicitly varied, these parameters are held at the baseline throughout
of this section. Implementation details for the estimators are provided in app. H.3.

Before turning to our results we briefly summarize the role of each estimator in our study. While
GMM-M utilizes PLMs for the identification of 6*?, it fails to incorporate all the information in the
likelihood of the consumer sample. MDLE does the opposite: fully utilizing micro data for the estimation
of 6*” while not leveraging the information in the PLMs. CLEER fully exploits all available information
from the data, making it conformant.

7.2 Sample size results

This subsection illustrates the practical implication of conformance with regard to sample sizes.
These experiments vary the size of the micro sample and the number of markets observed in a setting
of strong identification. The following subsection will consider variations in the DGP that alter the
strength of identification while holding sample sizes fixed.

7.2.1 Varying micro sample size. The first experiment varies the size of the micro sample. Growing
I,,, while holding M fixed increases the amount of information in the micro sample relative to the PLMs.
While increasing I,,, should improve the precision of all estimators, GMM-M only benefits via greater

precision in the estimation of the demographic micro-moment whereas MDLE and CLEER fully exploit
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the consumer data via the micro-likelihood though the score with respect to 6%, 6%, and 8. Fig. 2 presents
the distribution of 67, 67 and $3; from this experiment. Each plot compares the distribution of the three
estimators for a specific consumer sample size (rows) and a given parameter (columns). CLEER is a
solid blue line, GMM-M is a dashed green line, MDLE is a dotted black line. The central row, I,,, = 1 000,
represents our baseline DGP.
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Figure 2: Distribution of parameters for different sizes of consumer sample.

Beginning with the smallest micro sample I,,, = 250, CLEER dominates both GMM-M and MDLE for
67. At this small micro-sample size, CLEER and GMM-M perform similarly for 8” and §3, outperforming
MDLE. As I,,, increases, there is significant improvement in the precision of both 6% and 8” for CLEER
and MDLE, both of which utilize the score of the likelihood with respect to 6”. In contrast, GMM-M has
a smaller improvement as I,,, increases. This is intuitive given its inefficient use of the micro data. At
I,, = 4000 the MDLE and CLEER almost coincide and outperform GMM-M. The similarity of MDLE
and CLEER for large I, is also an implication of conformance.

The left panel of Tbl. 2 presents distribution and inference statistics relating to 67 for this DGP.

Summary statistics for the other parameters are presented in app. K, which covers all experiments
presented in this section. The median absolute error (MAE) numbers in the left panel of tbl. 2 reflect
that increasing I,,, improves the precision of CLEER and MDLE, but has minimal impact on GMM-M
for the reasons discussed above. In this experiment, none of the estimators suffers from significant bias.
The final two panels of the table consider inference. While all three estimators are close to the targeted
0.95 acceptance probability, we see that, as expected, the standard errors of CLEER and MDLE shrink
fast as I,,, grows. Moreover, when I,,, = 250 or I,,, = 1000, CLEER is able to generate more precise
estimates.
7.2.2 Varying the number of markets. We now reverse the experiment and consider increasing
M while holding I fixed. Note that consequently the size of the consumer sample for each market, I,
decreases with M. Intuitively, increasing the number of markets increases the amount of information
available from PLMs relative to the micro sample.

As with increasing I,,,, increasing M improves the precision of all estimators. However, whereas
GMM-M and CLEER fully exploit the information in the PLMs, MDLE benefits only in the second step
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Varying Consumer Sample Varying Number of Markets

Criteria I, CLEER GMM-M MDLE \ M CLEER GMM-M MDLE
Median 250  0.051 0.069 0.087 10  0.039 0.149 0.041
absolute 1000  0.032 0.068 0.041 50  0.032 0.068 0.041
error 4000  0.020 0.067 0.021 1000 0.015 0.018 0.042
Bias 250  -0.007 -0.004 -0.007 10 -0.008 -0.010 -0.008
1000 -0.002 0.003 -0.003 50 -0.002 0.003 -0.003
4000 -0.008 -0.000 -0.009 1000  0.001 0.001 -0.008
Acceptance 250 0951 0.967 0.945 10 0957 0.974 0.957
probability 1000  0.960 0.953 0.957 50  0.960 0.953 0.957
4000 0.936 0.957 0.935 1000  0.949 0.945 0.952
Median S.E. 250  0.078 0.103 0.123 10  0.060 0.218 0.063
1000 0.051 0.101 0.061 50  0.051 0.101 0.061

4000  0.029 0.101 0.031 1000  0.022 0.026 0.061

This Table shows the results from two separate experiments. The left panel shows result for varying
the size of the consumer sample (I,,,), while holding other parameters fixed. The right panel shows
results for varying the number of markets while holding other parameters fixed (including the total
consumer sample size).

Table 2: Monte Carlo Results for 67

— CLEER
- == GMM-M
----- MDLE

10

M
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Figure 3: Distribution of parameters for different numbers of markets

(estimating §*). Fig. 3 presents results for this experiment. Again, each plot compares the distribution
of the three estimators for a specific overall number of markets (rows) and a given parameter (columns).
For reference, the central row in this figure corresponds to the baseline DGP, M = 50, which is also the
central DGP of fig. 2.

Visually, both CLEER and MDLE dominate GMM-M when M = 10. With little exploitable
information in the PLMs, CLEER and MDLE almost coincide for all parameters. Both methods
outperform GMM-M, which relies more heavily on the relatively sparse information in the PLMs.
Aswe increase M (and thus J), there is significant improvement in the precision of both 67 and 6" for
CLEER and GMM-M, both of which are able to fully exploit the information in j}. In contrast, MDLE
improves only for 8*, as it relies on § exclusively in the second stage. At M = 1000 GMM-M and
CLEER outperform MDLE for 8*, 6*Z and 6*”. Both estimators perform better than MDLE because
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the information of the PLMs on 6* dominates that from the likelihood. Although MDLE also benefits
from more identifying information in ¥ for 8*, it performs worse than GMM-M and CLEER even for
B* because less precision in estimating 6* (and thus §*) causes a loss of precision in the second stage.
While GMM-M and CLEER perform similarly for 8* when M is large, CLEER still outperforms GMM-M
for 6*Z and 6*” because it efficiently combines identifying information from the PLMs with information
from the likelihood. However, this distinction would disappear were we to raise M even further.

We present MAE, bias, coverage probabilities, and median standard errors for 6;” in the right panel
of tbl. 2. The results for MAE are intuitive, CLEER and MDLE outperform GMM-M when M is small;
CLEER and GMM-M outperform MDLE when M is large. There is little evidence of bias in any estimator,
and coverage probabilities perform similarly well. As in right panel, CLEER is able to deliver more
precise standard errors while maintaining coverage probabilities.

Finally, while computational speed is not our focus. It is worth pointing out that CLEER is
computationally tractable. The largest problem presented in these Monte Carlos, with M = 1000
and ds = 19 000, takes about 4 hours to compute using a single standard processing core on the Penn
State ICDS ROAR computing cluster. Moreover, implementation of CLEER is able to compute estimates
for a version of our DGP with M = 500 and J,,, ~ 190 such thatds = 95000 in under four hours on a
laptop with a (16-core) Intel Core Ultra 7 155H processor and 64Gb of RAM.

7.3 Parameterization Results

We next consider the estimators’ performance for different parameterization of the DGP while

fixing I,,, and M at their baseline values. These exercises allow us to examine the impact of changes in
identification strength while holding the size of the data sample fixed.
7.3.1 Varying 6*. In our first exercise, we consider the estimators’ performance as we vary 6*.
Specifically, we conduct nine experiments where we alter the values of 6*” and 6*2.3° We focus on the
distribution of the random coefficient 67, which is plotted in fig. 4. Moving along a row of this figure
varies 6*Z while holding 6*" fixed; moving down a column varies 6** while holding 6*Z fixed. Our
baseline parameter values are in the central panel in fig. 4.4

As discussed in detail in section 4 and app. C, the identifying power of the consumer sample for
0*? becomes weak as 6*Z — 0. Intuitively, if changes in observable demographics do not affect utility
across products, then comparisons between consumers are not useful in measuring substitution. This
explains the poor performance of MDLE for small values of 6*# (first column). In contrast, GMM-M and
CLEER perform similarly when 6*Z is small. Both rely on the variation from the PLMs that compose ¥
to estimate 6*”. While CLEER also incorporates information from the micro sample, this is negligible
when 6*Z is small.

Fig. 4 also documents cases where GMM-M performs relatively poorly but MDLE is comparable
to CLEER. In particular, this occurs when 6*Z is large relative to 6*” (i.e., panels below the 45 degree
line). As is well known, when random coefficients are normally distributed, the objective function of

GMM-M is symmetric at 0. Consequently, the Hessian is singular, leading to weak identification of 6**

38This timing result uses full version of CLEER, a implementation of the less computationally intensive but asymptotically
equivalent version described in app. G computes the same problem in under two hours.

3For parsimony of presenting the results, we let 7% = 657 and 67” = 65 throughout this experiment.

40A small number of replications for MDLE estimator fail when 6% = 0.3 due to the gradient becoming numerically unstable
after several iterations. We do not include these replications in the figures or reported statistics. This issue does not occur
for the CLEER or GMM-M estimators or for MDLE in any other specifications.
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Figure 5: Joint distribution of (6%, 8") for CLEER and GMM-M when 6*? = 2.0 and 6*” = 1.0.

near 0. The effects of this are visible in the bottom row of fig. 4. While a similar issue arises for CLEER
and MDLE, it is mitigated by the use of the likelihood score.

To illustrate this phenomenon further, fig. 5 plots the joint distribution of (6%, 8?) for CLEER (blue
cross)and GMM-M (red x) when 6*” = 1and 6*? = 2.*! Aswe see, the jointdistributions of both CLEER
and GMM-M are centered at the true parameter values and exhibit strong correlation between 8% and &7.
Intuitively, this correlation is driven by the need to solve the “correlation” micro moment for GMM-M
and the 6%-micro likelihood score for CLEER. Of course, the 8%-score contains more information than
the correlation moment as we explain in section 6.3.1. However, these factors alone can only pin down
a curve through the (67, 8”) plane. To identify these parameters individually, GMM-M relies primarily
on the differentiation IVs in the PLMs, whereas CLEER combines the same PLMs with additional
information from the 6”-micro likelihood score; see section 6. Both of these sources of identification
become weak as 6*” — 0. However, the added information means that CLEER will (asymptotically)
outperform GMM-M along this path.

Aswe look across all panels of fig. 4, CLEER performs well.*> When only one source of identification is

useful, it roughly matches the performance of the estimator that exploits that source. When both sources

4Iwe choose to focus on this combination of parameter values because when 6*” = 0.3 the GMM-M micro moments
estimator exhibits a mode at the lower bound of parameter space for 6” at 0 which is visible in the lower panels of fig. 4.
42CLEER does exhibit some bias in the top row when 6*” = 2, we explore this further in section 7.4 below.
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Figure 6: Distribution of parameter estimates for (6,2, 61", B{) varying the strength of the instrument for
x'. When a = 1, x; = b', the correlation between x' and b' increases with a.

are useful, it efficiently weights the two. It does so with no pre-testing, tuning, or other adjustments
on the part of the researcher. This exercise provides a finite sample illustration of the value of the
conformance property in practice.

7.3.2 Varying instrument strength. So far, we have assumed to have access to a strong instrument,
which is a strong data requirement in many empirical applications. In this experiment, we assess the
sensitivity of the three estimators to varying the strength of the instrument b! for the endogenous
variable x!'. As explained in app. H.1, our DGP parameter a € [0, 1] governs the strength of this
instrument. Fig. 6 plots the distribution of estimates for (6;'%, 6;'*, 8;) (columns) varying a (rows).

We start with a = 1, such that x! is exogenous and b! = x!. In this case, all three estimators perform
well, but CLEER has a slightly tighter distribution around the truth. When a = 0.5—our baseline case
where the mean F-statistic of the first stage regression of instruments on x! over all replications is 190.71
(s.d. 18.05) the instrument can be considered strong. For the 6 parameters, this has no effect on the
MDLE two-step, which does not use the instrument to identify 6*. CLEER and GMM-M both become
less precise than when a = 1. The biggest decline in performance comes from GMM-M, which ignores
the micro data variation. CLEER, which was always the most precise estimator, remains visibly more
precise than MDLE for 67, although its advantage for 8% and $; is smaller. Finally, when a = 0.15, the
mean first stage F-stat is 6.74 (s.d. 2.21), so the instrument is considered weak. As expected, GMM-M
performs poorly for all three parameters. This weakness will carry over to the differentiation IV which
is constructed using the predicted values from this regression. However, the distributions of CLEER
and MDLE are essentially identical and remain precise (and approximately normal) for 6*. MDLE
suffers essentially no loss of precision for the estimate of 6* from the a = 0.5 case. CLEER is no longer
more precise than MDLE owing to the fact that the PLMs are no longer adding useful information for
6%, but it matches MDLE’s performance. There is also a difference for §* between GMM-M and the two
likelihood estimators. Since MDLE and CLEER identify 6* and 6* from the micro data, all the useful

variation in b! is preserved for the estimation of 3*.
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Figure 7: Distribution of 6} for different values of 6*¥ comparing the CLEER estimator with 11 node
and 19 node quadrature integration with GMM-M.
7.4 Numerical bias

Asdiscussed in app. G.2, in practice likelihood-based estimators are subject to bias due to the use of
numerical integration over v. This bias will grow more severe as 0*” rises. All of our experiments so
far have used 11 point Gaussian quadrature (121 nodes over two dimensions of v) to approximate the
likelihood. We now compare the performance of CLEER using 19 point quadrature (361 nodes) and the
GMM-M estimator—which is unbiased—when 6*” is large. Specifically we consider 6*” € {2.0, 2.5, 3}.
Fig. 7 displays the results of this experiment. As before, CLEER using 11 point quadrature is displayed
in blue (solid), and GMM-M is in green (dashed). We introduce a 19 point quadrature implementation
of CLEER displayed in purple (dashed dot).

The first panel, 6*” = 2, corresponds to the top-center panel of fig. 4. A slight bias is visible in the
11-point quadrature while the 19 point quadrature CLEER and GMM-M have similar means (GMM-M
has wider dispersion). In the center panel, 6*¥ = 2.5, bias for the 11 point quadrature estimator is more
apparent; it is largely but not completely eliminated by moving to the 19 point quadrature. The GMM-M
estimator is more disperse but relatively unbiased. These trends are extended further in the right panel,
when 6*7 = 3.

We have also considered the same experiment when x is exogenous, i.e., a = 1 (see Grieco et al.,
2023b, fig. 7). Across all values of 6*7, there is significantly smaller bias for both the 11 and 19 point
approximations.This interaction between the strength of the instrument and the degree of bias is
intuitive; a stronger instrument leads CLEER to rely more heavily on the PLMs in estimation.

The degree of approximation bias is under the control of the researcher and can be alleviated at
the expense of more computational resources. Of course, computational demands will rise with the
dimension of 6*¥. However, stipulating that the variation exists to identify a high dimensional 6*”, one
could use sparse quadrature methods to attain a high degree of accuracy with a reasonable number
of integration nodes (e.g. Bansal et al., 2021). These results suggest that the bias of CLEER can be
contained to acceptable levels given modern computing resources.*?

7.5 Diversion

We conclude this section by examining how our three estimators perform in estimating substitution
patterns across the sampling and DGP specifications we have considered.

Specifically, we present results on diversion with respect to unobserved quality, defined at the truth
as, Djy, = =0k, Ok | O¢;,,0jm» With diversion as a function of model parameters 3 = (6, 8, §) denoted
Dikm®)-*

43 App. E.3 proposes a conformant, but not efficient, GMM estimator that does not suffer from integration bias.

*We highlight diversion with respect to j, rather than x;,,, because in our DGP consumers can have both positive and
negative preferences for both observed characteristics. While this degree of horizontal differentiation is reasonable
for many empirically relevant characteristics, an implication is that 6x}m7z'jm may be zero resulting in diversion being
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Experiment Specification CLEER GMM-M MDLE CLEER Logit

11 nodes 19 nodes
Baseline 1.039 1.498 1.304 27.636
[1.651]  [2.919]  [2.032] [31.093]
Vary I,,, I, = 250 1.286 1.557 2.292 27.663
[2291]  [2.897]  [4.035] [31.003]
I, = 4,000 0.829 1.517 0.863 27.606
[1.172]  [2.907]  [1.238] [30.820]
Vary M M =10 1.208 3.079 1.298 27.353
[2.098]  [7.018]  [2.175] [35.567]
M = 1,000 0.725 0.737 1.231 27.081
[0.999]  [1.021]  [2.105] [34.814]
Vary (6%,6%) 6% =0.3,6"=0.3 0.644 0.953 0.789 2.712
[1.133]  [1.739]  [1.359] [3.428]
6% =1.0,6* =0.3 0.607 1.112 0.652 14.854
[0.900]  [1.998]  [0.985] [17.039]
6% =2.0,6*=0.3 1.343 2.075 1.358 60.232
[1.671]  [3.744]  [1.721] [65.964]
6?2 =0.3,0"=1.0 1.073 1.197 2.614 14.874
[2.118]  [2.408]  [4.682] [17.399]
672 =2.0,6"=1.0 1.768 2.863 1.878 76.397
[2.404]  [5.228]  [2.577] [83.200]
6% =0.3,6"=2.0 2.640 2.427 15.302 60.433
[5.038]  [4.522] [22.650] [66.293]
6% =1.0,6¥ =2.0 2.645 2.863 5.338 76.330
[4.569]  [5.367]  [8.483] [82.870]
6% =2.0,6¥ =2.0 3.297 4.257 4.227 132.494
[4.800]  [7.605]  [6.512] [143.081]
Vary a a=0.15 1.200 7.959 1.415 29.214
[1.969]  [14.937]  [2.299] [32.918]
a=1.00 0.808 0.949 1.087 23.023
[1.206]  [1.506]  [1.778] [25.670]
Integration a=0.50,6Y =2.0 2.631 2.856 2.497 76.109
Bias [4.524]  [5.578] [4.186]  [82.823]
a=0.50,6"=2.5 5.492 3.871 3.596 118.481
[8.533]  [6.914] [5.869]  [127.526]
a =0.50,6" =3.0 12.901 5.272 5.365 172.998
[17.299]  [9.231] [8.978]  [185.756]

Note: 90th percentile is presented in brackets.

Table 3: Median and 90th percentile of D()) across estimators and experiments

We compare estimators based on the following MAE- based summary statistic,
M Jp

D) =100- M~ 3] ) 77— Z| iem = DijtemP)]- (28)

m=1 j=1
In words, D(3)) is the aggregate absolute error in diversion from inside good j to all other good (including
the outside good) averaged over all products j weighting by their inside share. D(;)) € [0, 200) due to
the properties of Dy, (1). We weight by inside share so that the more popular products (which tend to

be more important in an antitrust setting) receive more weight.*

undefined for some products.Moreover, diversion will be numerically unstable when Gx}m TTjpm is small. In contrast, utility
is monotone in & jm across all consumers—like price in most scenarios—resulting in well behaved diversion ratios between
Oand 1.

45In practice, diversion must be numerically approximated. Since we know the true distribution of z is normal for our DGP,
we compute Sb(zﬁ) using precise quadrature rules to integrate over both z and v. Hence, integration computing Q)(zf)) is
more accurate than that used in estimation. We use the same integration method to compute D(3p) for all estimators. Asa
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Tbl. 3 presents the median and 90th percentile of the distribution of D(3) over all of the experiments
presented in this section. For reference, the final column also provides D(z) for the simple logit model,
which is straightforwardly calculated from observed market shares since ’f)lj"i‘m = Sim/(1 — 8j,). We
view this as an index of the degree of unobserved heterogeneity in each underlying DGP.

All estimators considered dramatically out-perform the logit model across all specifications. This is
no surprise given the logit model lacks the flexibility to capture the heterogeneity in our DGPs. Our
estimators tend to capture substitution patterns well; this is intuitive given they are correctly specified.

Overall, CLEER tends to outperform GMM-M and MDLE. Indeed, CLEER outperforms MDLE across
all specifications, although the difference is small in cases where micro data is the dominant source
of identification (i.e., when the micro sample is large, there is a significant degree of micro sample
variation, and the product level instruments are weak). Comparing CLEER to GMM-M, the only case
in the top panel where GMM-M outperforms CLEER is when 8% = 0.3, 0*” = 2. Here, the integration
bias from the likelihood when 6*” is large outweighs the advantage from leveraging the micro sample
when 6*7 is small. The bottom panel shows that integration bias continues to be exacerbated as we set
0*¥ even higher. However, increasing the quadrature precision from 11 to 19 nodes largely alleviates
the issue. Indeed, at the 90th percentile, CLEER with 19 node quadrature outperforms GMM-M for
across all experiments. Finally, it is worth noting that the fact that logit model performs so poorly in the

bottom panel suggests that the degree of heterogeneity may be higher than is empirically relevant.

8 Conclusion

Random coefficients discrete choice demand models are a workhorse of applied industrial orga-
nization. In this paper, we propose CLEER, which optimally combines the likelihood for purchase
data with product level exogeneity restrictions. This estimator does not require additional parametric
assumptions relative to a GMM estimator. CLEER is a unified estimator that conforms to a wide variety
of data environments and achieves efficiency in each. It has an additional advantage that inference is
straightforward and is correct under more general assumptions than the standard approach. Finally,

CLEER is computationally tractable, suggesting that it will be directly useful for applied work.
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A Consumer demographics

The paper and proof assume that the distribution of consumer demographics G is observed and
constant across markets. It moreover assumes that the micro sample is a random sample from the
population. In this appendix, we show how both of these assumptions can be relaxed.

A.l Estimation of G or G,,

If we maintain that G does not vary across markets, an estimator of G using a sample size that
grows at rate faster than M and I can be used in its place without affecting the asymptotics. We view
this as a typical case when one uses a population census (such as the Decennial Census) or large
demographic survey (such as the Current Population Survey or American Community Survey) to
estimate the superpopulation. One may also want to allow the superpopulation G,, to vary by market.
In this case, it is reasonable to assume that the fastest possible estimator of G,,, converges at rate N,
since this is the size of the observed population.

Regardless of how G, is (consistently) estimated, our estimator remains consistent, but in some cases
inference would need to be adjusted to account for estimation error in G,,,. If I,,, and M are small relative
to N,,—a common case—estimation of G,,, will again be asymptotically negligible. If I, is large relative
to N,,, and a market-specific G,, is estimated at rate \/N_,m our estimator’s inference procedure would
need to be adjusted. Alternatively, one may consider an alternative estimator of the (finite) population
analog of G, in which one accounts for inclusion in the micro sample when integrating out z;,,, for

individuals outside the micro sample. However, this is beyond the scope of this paper.
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A.2 Selection
Our methodology combines the micro-sample with the product shares by integrating out z;,,, in the

choice probabilities when individual i is outside the micro-sample, yielding

71']%:0(5’ 0) = fp(yijm =1NDjp, = 0] zjp, = 2)dGpy(2).

This allows for a variety of forms of selection. Clearly, random selection poses no difficulty as in this
case 71;3":0 = P(Dj, = 0)7jpm, leading to the loglikelihood presented in (6) (up to a constant).
Interestingly, deterministic selection based on y;;,, of the form D;;,, = D}, 1(yio, € J) where Dj;,, is
random and J represents a subset of products is also straightforward. This case is common, for example
with vehicle registration data, administrative data of regulated industries, or data on sales of a particular
subset of firms. In this case, P(Dy, = 1N Yjjm = 1| zjp) = P(D}y, = 1)7rjiﬁlm1](j € J), sowe have
p=o0 _ )7im JEJ

7'[jm_ = ) .
P(D;, =07y, j EJ

Moreover, in both of the above cases, because only logarithms of the choice probabilities appear in the
loglikelihood, the P(D;;,, = 0) factor only adds a constant to the loglikelihood and is hence irrelevant.

Selection dependent on z;,,, can be accommodated by accounting for selection when integrating over
the distribution of demographics. GB=°(z), the distribution of z;,, in market m but not in the micro
sample, and its complement GH=(z) are easy to compute from the consumer level data and the known
distribution of z;,, in the population, G,,,(z). If selection does not depend on y;.,,, except through z;,,,
then,

Th=0 = f P(Dym = 0| Zim = )7 dGin(2) = P(Dypn = 0) f 72,(3,6)dGE0(2).

More general forms would have to be explicitly modeled and are outside the scope of this paper. For
example, we are unable to write down a likelihood that incorporates selection into the micro sample
based on v (e.g., taste for sugar) without further assumptions. However, these assumptions would also
be needed to form micro moments that would address to this form of selection.

Selection into the micro sample is closely related to the issue of compatibility described in CG23
which is visible when there are discrepancies between population and micro sample distributions.
They propose assuming compatibility of specific moments for use in estimation when other moments

indicate that the micro sample and population distributions are incompatible. See CG23 for examples.

B Lemmas for proofs of consistency and asymptotic normality

This appendix contains the primary supporing lemmas used in theorems 1 and 2. It concludes with
L5 which establishes consistency of 7, 8, and . L9, 10 and 12 to 15, which are referenced here, are
relegated to apps. J.2 and J.3.
B.1 Consistency
Lemma 2 (&, @ approximations). Given our assumptions, (a) SUP ey |®(6, 1) — PO, *)|1[p"(7) <
Pu®] 1 pu(8) < 15 (B) SUP e, IABE, D] / pp(6,7) < 1;(c) B(E%,5) < 1,4(6%,5) < 1,and
dO0*, %) < 1.
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Proof.  First recall that &(6, r) = ||P5(6, )||? / 2and &(6, ) = | P[8(6, ) — (6%, w*)]||> / 2. For (a),

rearranging terms,*® we apply the triangle and Schwarz inequalities to obtain,
|2(6, 1)—=P(6, )| < |P[6(6, )—8(8, )|+ P[8(6, m)~8(8, w)]|I- |P[8(6, 7*)—~8(6*, w*)I|. (29)

Let B = B(B"B)~/2. By the MVT, ||P[5(6, 7) — 8(6, 7*)]|| = ||PD,(6, #)(zr — 7*)|| for some 7. Now,
since PBB” = P, B"PB < BB = I, and hence PP = B(B"PB)B" < BR","

- R triangle . - R
12P[8(8, ) = 8(8, w)]|| < IBYDA(8, )7 — 7*)|| < |B"D(6, )(7r — 9)] + | B"D(6, A)(s — *))|
Schwarz

PU(DIB DA(8, Dl + lIs — || - 1B"D(6, D), (30)

where || x|y = \/Zm | X112 / N,,, and p™(7r) as defined in theorem 1, step 3. Now, by Fiii|

BB 1/2
sup [B"DA(6,7)| < A'max[( Sup \/ Z B[P 7 (6, 7Tm)||2 < K. (31)

OFxImx @Cxﬂ'ﬂx

~ - Lo(d) .
Moreover, Sup@gxn'nk ”BVDH(Q’ 7T)||N < Pu Sup@gxn‘uk ”BvDﬂ(e’ 77)” = PuK_3’Where Pu = 1/ miny, VNm-
Consequently, since E[|s — 7*[|> < 3 N;;' = py, substituting into (30),

1P[8(6, ) — 8(6, 7)]|| < / P*(M)Op(Pux ™) + Op(\/onk ™). (32)
Thus,

sup |2[8(6, 7) = 8(6, Z)[[1[p*(m) < piw(©)n] _ sup P P(mI[e"(7) < pia(O)n] + /PN

OExIT Vpia(6) ~ ogx 134 p1a(6)
Pu\/_ cl
S 3 K6P1d( ) <1. (33)
Finally, from (29) we obtain

|26, ) — @6, 7)[1[p"(7) < pia(E)n] e p%®(6)

su <0p,(1)+0,(1)su <1,
@gxﬁk pia(6) p(1) +0p(1) @gp pia(6)
) E—

<1

which concludes the proof of (a).
Now (b). Let§ = 8(6,7) and 6* = 8(6*,7*). First, |P5*|| = ||P&|| < 1. Reusing fn. 46 with
x=P(+6%),y =P, and z = PS§* and applying the triangle and Schwarz inequalities,

|96, ) — @(6, )| = [|PS)* — |P(6 = 6P| / 2 <
128112 + 1267]| - 1P(6 — )] = Op(V[0p(1) + | P(6 = 6DI. (34)

By the triangle inequality | P(6 — 6*)|| < | P[6(6, ) — (6, 7*)]|| + |P[8(6, 7*) — 6*]||. Working with
the first term, by (32) and because pp (6, r) > /73014(6)p™(7r) and pp(6, ) > n*p:a(6) = x°p,4(6),

46We use the equality ||x — z||> — |y — z|? = |x — Y|? + 2(x — )"(y — z) with x = PS(0,7), y = PS(0,7*), and
z = PS(0%, ).
47Using |PBx|? = x"B"PBx < | x|
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|P[8(8, ) — (6, )] VP"(m)0p(py) + Op(\/pN) o Op(pu)
sup < sup 3 sup
@gx[ﬂ]K ,OD(@, 7f) @Cxﬂ-nx PD(e 7T)K @C K3" ,773p1d(e)

For the second term,

C
+o0p(1) < 1.

1?66, %) = "1l _ . NPP(©) 1«
sup < <1
¢ 77Pu(®) ™ p2Bu(e)

Combining terms, we have the asserted result. Finally, (c):

Su
ot PpOG D)

20(6,5) = [|P[8(6%,5) — 6*1I* < IB[6(6*, 5) — 6*]|?

~ Lo(d) 1
< max |B'D,[6%, 7% + t(s — m%)](s — 79)|]* < x %N < 1,
0<t<1

so ®(0%,s) < 1. For &(6*,s), we reuse (34) to obtain #(8*,s) < |H(6*,s) — ®(6*,s)| + P(6%,s) <
\J@(6*,5) + 1 + ®(6%,5) < 1. Finally, because ®(6*, 7*) = 0 we similarly get $(0*, 7*) < 1. O

Lemma 3 (£*, £* approximations). Given ourassumptions, (a) SUP g e |£*(6, m)—L* (6, 7*)|1[p"(7) <
Pia(©On] 1 pia(8) < 1; (b) supge, e IAL*(6, )| / pp(6,7) < 15 (C) SUPge, e [£°(6%,9)] / pp(6,70) <
1£2(6%,9)| / [pia(e)] < 1.

Proof. For (a), we break up the problem into two smaller ones. Let 7,,,(7) = 1(||,, — 7l < %)
and a(6, ) = 1[p"(7) < pia(B)n]. We first show that sup@cxﬂxz 1 - 5, (M) L6, )6, ) /

pia(6) < 1. Noting that max,, SUPge L3,(6, ﬂ)/Nm<1 and dropping the arguments from «, 7,,,, we

X
have uniformly over ©¢ x [1%,*

aszm(l - Tm) < O‘ZmNm(l - 7-—m)”ﬂm - 77;;1”2 < 2a ZmNm(l - Tm)(”ﬂm - Sm||2 + ”Sm - 77;;1”2)

pia(0) B x20ia(0) B x20;a(0)
@)
]‘12“”20@0'(77) (log M)2 (1— 1)
< ‘szid(e) op(l)a ; pia(6)
o ®

recalling that p® = Zm Ny, |7t — Smll?. Now, use the definition of a and recall = x> such that 2) <
2x < 1. Further, (3) is negligible (relative to (1)) because (log M)? /x> é min,, N,,. So SUP ey e <1
That leaves us with

MVT

a2, Tl Lin(6: ) — L3 (6, 30| sy a2, TnllTtm = Tl - 1£5m (6, n)l
sup sup
OfxIx Pld(e) @Cxﬂ'ﬂk pld(e)

Schwarz [0 4 N Ty — 71'* 2 . 2
= qup \/ Zpp Nl = il 5 Sl @rP _ o 1 oy
LXK pia(0) ocxmx \| G Nypia(6) \/m

where the penultimate inequality follows from L12(d), L15(e), and L9(f). This completes (a).
Now (b). We can replace AL*(6, m) with AL*(6, 7) — AL*(6, m*) because

|A£.(6’ n—*)luo(a) V lold( ) Og + ¢
sup —————— < sup log’I, < > <1
oexme  Pp(6,7) o P06, 70) n?Bia(€)

48For the second inequality, note that ||a + b||?> = 2(||a||? + |b||*) — la — b||? for a = 7T,; — Sy, b = Sy — 7T
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Thus, since |67 < C,||6 — 6|, by L12(b), we have

AL*(6,7) — AL (O, %) s 0 — 0%, - 1448, (62,6, A)(m — *
sup |AL*(6, 7) (6, 7)] Yo sup I 2 1I4L52,( X )
OLXIx pD(e’ 7T) e¢xmx ,OD(G,H')
 Z 16 = 6% - AL31 (62,6, )P - [0 — 2
< C, sup
e X« pD(e’ 7[)
L10(b) 6(1 I )3 \/ZmImHG — 9"‘”31 . ||71’m — 71’;1”2 @
<x °Uo su = .
& @gxﬁk pp(B,7)

Applying fn. 48, we can thus break up @) into two terms. The term corresponding to s,, — 7}, is by
L12(d) bounded above by

i =% 3 L[
,OuK—ﬁ(logI+)3(1ogM) sup Zpld(e)’i 2 pu(log I+) logMc<[|1.
ocxme 1 pia(6) KlZ\/m

Now the 7,,, — s, component,

V) Zo Imll6 = O*12 - 1m = s 1 NEYOrIc)

(logl,)* sup < (log1,)’p, sup

OEXIT kpp(6, ) ogxi< K6/ 13 pig(6)p™(7)

” :=;<3(10g L)py oy
%105

Hence, (b) holds.

Finally, (c). Recall that o, (8, ) = 7 max(np;4(6), p™(7)) > n?5i(€) for all & € O, so we focus on the
final inequality of the statement. For 7 between s and 7*,

® ®
Iﬁ’(ve*,S)l Zles— ﬂ*)v’é;r(ef’ ﬂ*)| 4 |(s — ﬂ*)vﬁ?mv(e*, ) (s — 7*)| _
7%0ia(€) 7%0ia(€) 7%0ia(€)

We show separately that (x) and (y) vanish. First, by Schwarz, (x) is bounded above by ||s — 7*|| - || £3]| /
[178(€)]. Now, Since i = Ng 3, Yijm and Vyijm = Tim(1 = i), Ells = * |2 = 5, Elsjm — 3l =
ij N;,;2 2 [E[nj*;n(l - nj‘;n)] < pn < 1. Further, by the information matrix equality, we show (x) < 1
since, .
E(LEIP1A) _ oo 12 ¢ 1 c
14 Ga(e) noae) T k125G T kPP
Thatleaves (y). Let [T3" = {70 \/ Nyl — 7|l < log M}. Noting that Vim: || 72, — |l < [1Sm — 7Tl
such that by L12(d), P(3m: #,, & M%) < 1. By Schwarz, recalling A = [|6*?|, £ = AL + £,

*112 ”*é;mm(e*’”m)llwmz PN
O e = A g ot Ot O 69

L15(a)

where @y = [1£52m(0,0”", )l = 0, ®m = Amaxogi<r 1445 702,,(t0°%, 6", ), and ©y =

nnoZm
Amaxo<;<y [|1£3 192, (8077, 07%, 7,,))|. Finally,
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ON Llo(b> \/I A2 pN(logI+)3n:.x3

ax (b) <1
PEa@ mom " 5@ P Be)
ION L15(f) ION 5 ‘ON 1[i]
ax max([,,,A < BN 1,
P25 m Om = 25,0 " )
So (y) < 1, which completes the proof of (c). O

The following lemma establishes step 6 of theorem 1, showing that the restriction of steps 1 to 5 to
[1* c [ is without loss of generality.
Lemma 4 (step 6). With probability approaching one, (8, #) € © x [T~
Proof. 1t is sufficient to show that limy,_, ,, P[infgxpee (6, 7) — Q(6*,7*) < 0] = 0. Since
&(6*, 7*) < 1 by L2(c) and &(6, r) > 0 by definition, we only need to establish that the likelihood
difference infgypee £(6, w) — £(6%, 7*) diverges with probability approaching one. For notational

parsimony, we tackle the most challenging case, i.e. where I = N, which implies,

*
gljm ‘im

+ Non Z%m ; Zyum log 2

um”]m jm ]m

= Zyljm m(e* T*).

[’Am(e’ ﬂ'm) = Z Yijm log
ij

§
Sijm
Define £, = {j: 7, > x}. We will split £,,,(6, 1) — £,,,(6*, 7}3,) into terms involving &,, and terms
involving its complement £, and bound these terms individually.

First, the &7, term. If £, is empty, this term is zero, so suppose &y, is non-empty. Let €;;,,(6, 7,,) =

log G;jm(6, 7,,)-By L13, for some fixed C < oo,
Om

- " Om
TT;
[1og——cuzlm||— C| = Nn 2 simlog 2= =C 3 yigem(zimll + 1),
&, jm i

ZZyumlo

i &5, i &%

L9(b)
With yigem = Yge Vijm- Recallingx = K43 = exp(—4x}), min j, 7, /x = exp(x}) Minjp, 72, /K >

exp(;cg) > 1. Hence,

*

Tim
1 1 —. 1
@ > Ny Z Sim log — 2 Ny, Z S]mK5 - m(Ka Z 71';;" —Xs Z(S]m - 7521)) - Nm(Kgﬂ';fn - jfm)
&% &% &%
L12(d)
Recall puCI: 1 / min,, 4/N,,, S0 max,, &{,, < ksince max,, [|S,, — | < max,, ouVNulSm — Tl <
pylogM < x / Kg. Thus, we can treat Nmnfg“cmkgas alower bound to (0),,,.

We now turn to 2),,,,*

Bonferro iii], subg

‘ N2 mi2
IP[EIm: |@m—E(@ | A)| > Nm”ECm] < 2 |@m_[E(@m | A)l > N, ﬂSCM1 ZZeXp( 2N, Esz) <L
— m

Further,

- [E(@m | A) = _CNm[E(yié‘Cm”Zim” | A)

49Because the sum of i.i.d. subgaussians is subgaussian with OVP that is N, times as large, D, — E(@),, | A) is subgaussian
(conditional on A) with OVP no greater than N,,cj.
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= —CNpE(yigemlZimll111Zimll < 15/(2O)] | A) = CNpE(YigemZiml11LIzimll > 5/(20)] | A)
Holder

1/
> —Npt§ie /2 = CNp (e P E(| 2 [IP2) 1VP2[ P 2il > 5/2C) | )72, (36)

will show to be negligible

for any p,, p,, p; > 0 whose reciprocals sum to one. We now show that the last right-hand side term
in (36) is negligible compared to the first. We have, P(||z;,|| > x5/(2C) | A) 021‘ 2exp[—x[2/(8C2cH)]
= 2M —eR/(Ced) , Whereas ngcml;aj %, which by C decreases more slowly than any power of M.

So up to negligible terms (uniformly in m), mean‘gcm/ 2isanupper bound to |(2),,| and hence a lower
bound to O),,, — @), (i.e., the £, term).

Finally, the &, term of £,,,, i.e. I e, Yijm 10g(5i5m/Sijm)- We first show that left hand of (37) is
negligible, so we can simply consider ;. 3} e, Sijm Log(§im/Sijm)-

VN (logN)3

N, Kéﬂ'é'cm

IlO(b)
< max sup
m  exmn

4 Py (IOgN)3 il

K5

max sup|———— > > Vijm — §l,m)10g <1 (37)

m  exmn Nmkaﬂgcm i Em l]m

Now, for each i, fixing G;gcp,, and minimizing 3. ¢, 108(675/6ijm) With respect to the 6, j € Epm,
subject to the adding up constraint ), e Sijm =1 —SGigem yields i, = gi*jm(l — Gigem)/Sie,- Hence,

ZZczjmlog S =232 Simlog

E3
lJ m * Siem
Z Siem log

l] m i

i &m i Em — Sieem
Jensen tlogt convex « MVT .
2 Z glé‘m log glé’m 2 Nmﬂé‘m 10g Tem 2 _Nmﬂé‘cm’
where 7, = Ni' 2. - ° S0 €,y term is bounded below by —N,, e, up to negligible terms.

Flnally, we show the &,, term is negligible relative to the &5, term by taking the ratio of their bounds:

N, 78 1 Hoe — Tacy, \O®
max% — _T(l + max M) 5
m N, Tec,, K 19 m Tec
m’tgemhts ) m
P -
i(l + max M)Lﬁd)i(l + max gM ) " i < 1
Kg m Kn K; m /Ny, K;

where the rate inequality marked L12(d) uses L12(d) with s;,,’s replaced with n‘j‘;ﬂ S
Sum &, and &, terms to show limy_, o, P[infgumxe £(6,7) — £(6*,7*) < ¢| = 0foranyc > 0. O

The following lemma establishes consistency of 7, 8, 5. The rate for 7 is intermediate in that it is
superseded by theorem 2 which shows asymptotic normality at a \/_ rate.
Lemma 5 (Consistency of 7, 8, 8). Forr,, = {/_\/mﬂogM (a)max,, [N, 772 |1 m—l12] < 1;
A S g% (©vm:s,, — 8t < 1.
Proof. First (a). Let #4,,(7,,) denote the vector # with its m-th element replaced with 7,,, so
Zam(Am) = #. By definition, 7, is the minimizer of Q[8, Za,,(7,,)] = Zm,;ém LB, ) +
L8, ) + D8, 7 g (7)) The first term does not depend on the choice of 7,,, and can be ignored.
We will use 7 4,,,(7,,) to show that 7, is close to 7, by contradiction. Fix any constantc > 0. Suppose
that for some m, \/Ny,||7,, — 7|l > c7,,. We show that Q[8, 7 p,( )] — Q[O, Zam(h)] > 0 with

probability approaching one, providing the contradiction with 7,, being an optimum.

YFor the MVT, 0 < t < 1,logt = (t —1)/f = —(1 —t)/ffort < < 1.Sotlogt > —(1 —¢).
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First, noting that in (15) min(7;},, 5,,,) < 7,,, we have the following bounds,

. ()
Zminﬁfn(ﬁm) > minNm||7%m —Smll? > ¢ min 72, > c*(log M)?,
(38)

(15) S
2max£' m () < maxN [Sm

min(7yy,, S,,,)

— ¥ 12 L2
7| < (logM)?.

So min,,[£®(7%,,) — L% ()] > c2(log M)? / 4 with probability approaching one.
Second, £8,(8%, 7r,) = 0 by construction. Since £3, = £8, + ALY, and £3,(6, 72,,,) > L3,(6%, 7)) =

Ao (A 4 ¢ (A 5 * uo(b)
min Lm(eza Zm) > min Lm(eza 7Tm) |AL (9 7t )I Op(l)
m T'm m T'm m Tm

Third, we provide a lower bound on the contribution &(8, #) — B[4, 7 5,,,(7}5,)]. Recall that P < P =
B(B”B)™'BY, so expanding (6, #) around 74, (7r}5,),

1P{8(8, ) — 816, Zam(mm) M < (BYB)™2BYD (6, #)[ 7 — Ztam(mm)]|
Fliii],Schwar:

= ”(B B)_l/zB [Drrm(e ﬂm)(”m - ﬂm)” < Op(M_l/Z)”B ﬂm(é’ ﬁm)” ' ”ﬁm - ﬂfn”

Recall PP = . Since forany 3, §, |8" PS5 — 5" PS| < |P(5 = O)|? + 2| PS5 = )| - |PS]|,>

2|66, 7) — BLO, am(7mm)]|
Op(M_l)”Bthanm(é’ ﬁm)llz : ”ﬁm - 77;1”2 + zop(M_l/z)”Bthanm(é’ ﬁm)” : ”ﬁm - ﬂ:n” (39)

Now, max,, |By;Dm(8; 7)) L9<(d) x~3 max,, || Byl GE‘ x~34/M, which implies that the right hand side
in (39) is bounded above by Op(N‘1 ‘6)Nm||7rm Tol? + Op(Ni V2NN l| 7 — T 2 " (A
uniformly in m because max,, N;,;'%~ 621,

Combining the three terms, noting that £%,(7,,) — £® (7}, is dominant, we have Q[8, 7 ,,,(Z )] —

Q[8, ipm(l)] > 0 with probability one, showing the contradiction and completing (a).

Now (b). Recall that B = B(B"B)~V2such that § = (X" PX)"1X " $8(8, #) = (B'X)*B"8(6, #), and

1B —B*|| = I(B"X)*B"8(6, #) — B*|| = |(B"X)*BY¢ + (B"X)*B”[8(6, #) — 8(6%, )]
S (BYX)*BYE + (BYX)*B Dy(6, #) (6 — 6%) + (BYX)*+ B'D (6, #)(# — %) || < 1,
©) ©) ® ©) ®

where the last < holds because (1) < M~/2 (standard linear IV error); 2 < 1 (multiple applications of
WLLN); 3 < 1 (shown above); @ < M~Y/2 (multiple applications of WLLN); and,
® = (BVB)_I/Z Z Brvnan'm(é’ Tem) (R — 7o)
m

< |3 "By 2 B Do (6. )| -2 < VM max 2 < M1,

so @ x (3) < 1. Finally, (c) follows from Slutsky’s theorem, §,,, = 8,,(8, 7, L S (8%, 7h) =64, O

B.2 Asymptotic normality
Lemma 6 (Negligibility of higher order terms in (16)). Statements (17a) to (17d) hold.

STake a = P8, b = PS and note |||a|?> — |b||?| = |la — b||> — 2(a — b)”a|. Apply triangle and Schwarz inequalities.
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Proof.  First (17d). We first develop a lower bound for I';2. since L3y — L1, LA2 L5 > 0,

IR =E(Lyp — Lrglod L) = E(Ly + L35 — LrgLAA LS ) > EL M.

Dividing £% . into its diagonal blocks, £2%,, = N,,(II;;' + 7i'u”) > N,,l. By L5(a), we may
consider only 7,,, € 17}, = {72 |7ty — 7oll < 71/\/ Ny} Noting the (k, t) elements of £% ., and L%,
are Ny (Sim T llk = t] + sommoa) and Ny, (7ri [k = t] + 75,1) respectively,

Sjm
2 *
jim  Tjm

max Sup[Nyr |42 em () = L] < 2maxsup
m.qr mj mr,

= 2 maxsup Jm JmJm Jm 5 JT J il Jm7Jm <1.
" g, TmTim

So maxepo.] 1T o ly(D] = LA 2l < maxzepo 1) I(ELTD) VLR y(D] — LAJELE) ™
which is the norm of a block diagonal matrix with blocks < max,,[N;,;"/2[|I]| x N,,, x N;"2|[1]|]] < 1,
establishing (17d).

The remaining three results are similar to each other and are shown in L11. O

Lemma 7 (Denominator approximation). At the truth, I'gQgglg Ly o) @

—— T
Proof. Wewill show the equivalent result I's(Qgg —I'y >)[s < 1. Recall that Qgg = Qgg — 2o, Q7% 20,
We will separate the (2’s into their constituent parts £, @ and then drop negligible terms. We begin with
@), defining R = L71L 10,

1. Establish that @ ~ QeﬂL;Ul[.Qﬂe - QG?‘[L7_T71T¢71'71'£’7_T711'Q7T9 =: @ — @;
2. Showthat 6) ~ L, L7:L 0 + R Prg + PorR;
3. Showthat(?) ~ R P, R

Now define Qge = Lo — LoxLziLro. Since 1) = Lgg + Py, we have Qg ~ Qge + Pgg — R D —
D, oR + R” D, R. We now proceed with the terms of the right hand side:

4. Show that Qf, ~ EQ,;
5. Show that ®gg ~ MEgAZy, Pg R ~ MEAEy, and R” @, ;R ~ ME,AEy;
6. That produces Qg ~ E(Lgg — LorLlrilre) + MEAEY = I'y?, as promised.

The most complicated partisstep 1. LetA = D, B(B"PB)/2suchthat ®,, = D, PD, = D, P PPD, =
AA”. Applying the Woodbury matrix identity to (£ ., + AlAY)7,
©)
v
97_1711' =Lz + (prm)_l = 57_1'71r - L;}rA[l] +AVL7_”1.[A]_1A L7_r711'
~ Lan — LarAA Lar = Lap — Lan®Prnlir,  (40)

because (3) < 1 as we now show,

52This is easy to see for the case when HJ., defined in (19), is full rank because (L35 — £%,£54£5 )" is a main diagonal
block of Hf! > 0. Using the Moore Penrose inverse covers the case when HY, is not full rank.
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(B"B)"1/2BY @

[popn] /_'ﬁ
® = (BYPB)? B” D, L;:D;B(B” PB)"? = 0,(1)(B"B)"V2 B"D,Lz:DxB(B”B)"V20,(1)
<B"B=I

= 0,(M™12) x @ x 0,(M~Y?). (41)

Noting that £}, < £%2L = N,;'(IT}, — 7}ym)y ) because L4y > 0,

1
@ = ZBrvn[Dﬂmﬁ;nltm[D;mBm < Z JV_BIZDnm (H;;l TTmTTm )DﬂmB < Z B DnmlDﬂmB
m m ~m <0

1 1
~ 2 - EBnDzmDamB) ~ 3 7= <1 (42)
m M m

m

it follows that (3) < M~!, which establishes the ~ in (40). Substituting (40) into (2) completes step 1.

For step 2, substitute Qg,, = Lo, + P9, and multiply out,
®

= Lo L7LL R D Dp R+ Do Lrkd
@— o nnbre + 70 + Lozt + Loz lnnPro,

so it suffices to show that (8) is negligible. We have,

=1 <1

—~ T
= Dy PD,L7iD5PDg = DyPB(B"B)-1 B'D,L7:D;B(B"B)"1B"PDy < 1, (43)

which follows from B'D,£7LD,B = () < 1 as shown in (42).
Moving on to step 3, recall 7) = QgL 7L P L7120, we must show that

©)
@ - -,Rvd)rmje = Rv(pnﬂL;T?le)ne +¢67t£;[711®m'[fk + d)enﬁ;[}r(pn'ﬂﬁ;[}rd)n'e’ (44)

is negligible. Starting with (9), we have, @, = D,.PD,. = D, PP PsD,. Recalling $5 = B(B"B)"'B",

Le, Seg
0 = IR ) B () wocaiomm () TR () e @

Hence, (9) is negligible since like before, B'D,£;LD,B = @ < 1. The second term of (44) is the
transpose of (9). Following analogous steps, the final term of (44) ~ Eg ®HEg < 1, concluding step 3.
Collecting terms from above, we now have, Qgg =~ Qge + Doy — R P g — ProR + R D, R. For step
4,1et Uy, = I'o[Q5,, — E(Qbopm | Im)1l e, Where Q55 = Loom — LoxmLrrmLrom and U =Y, Uy,
the result follows from the fact that for any fixed vector v, E||Uv||? 2 1. This completes step 4.
Now, step 5. We will show the second result, R*®,4 ~ M_,T/lue We have,

=P
v _ 1V _ 1Y DD PP, —
R cpn'@ - 5e7r5mr[D7z5’[De - L@ﬂLﬂﬂDT[ ?B??B??B |D6 -

55, Ly B»EZ
MLenL;\?/I}zD;B (B]‘:/IB)—1 BVA.’/}I’B (BAV/IB)—l BI:IB (B;/IB)—l B‘;\ZIJB (BAV/[B)—l B‘;\?e ~ ME,AE.

The other two results follow by analogously applying P = P PFPFs and are left to the reader.

Finally, step 6, collecting the above results we have,
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Qop =~ EQf, + EgAEy — EgAE, — E AEy + ERAEy, = EQ§, + EAE" = T2 O

@ ®
Lemma 8 (Numerator normality). Evaluated at the truth, for.gg = Qg — Qg Q5[ Q% — LA7(s — 7%)],
d
Iedg — N(0,1%). R 0

Proof. 'We will first expand the Q’s and Q’s into their constituent parts and then drop negligible terms

before applying a central limit theorem. The steps of this proof are as follows, we begin with (b):
a. Show that (6) ~ Qg L7172 — Qo L7, L7172 = ©) — @);
b. Recalling that R = £;LL,¢ and defining 7 = #? — &, = L — £2.(s — 7*), show that

© =~ RVF+ R by

c. Showthat I'y X @ < 1.

Use the above steps with (@) = Qg = Lo+ g torearrange gg =~ (Lo —R"7)+ (P —R" d,). Continuing,
d. Show &g = EgB"E, R by ~ E; B E50.49 = Y, (Lom — LoxmLrnmPm + EBmém) = 2, Tms
e. Use a central limit theorem to establish that I'y§, S [0,limp; o 25, (TaVimI9)] = N(0, V).

We will establish these results in order, reusing results from the proof of L7 where helpful. For instance,
in step a we re-use (40), Q7L ~ £7L — £- o L1
For step b, we have (©) = R #? + &g, L727? = R”#? + (©. To show that () vanishes, we first show
that for any A-measurable K,
1K™ 72 < K™ QK2 (46)

To see this, note K" 72 = K" 7 + K" &,,. Proceeding term by term, E(|[K” 72 | A) = K~ £, K because
E(PF | A) = E[L5L5" + Loa(s — ") (s — 1) LRn | Al = Loz + L2z = Loy

where the first equality follows from E[(s — 7*)£3 | A] = 0% and the second uses the information
matrix equalities for £* and £®. For the second term, K" &, = K 'D,P¢ = K'D,PB(B'B)"'B"¢.
Since V[B"&¢] < BYBby Flii] and G[iv], |[K &.|> < K'D,PD,K = K" ®,,K, which establishes (46).
Applying this result is sufficient for () to vanish since setting K = £71®,o we have,

® in (43) last term in (44)

KvarK = ¢977.'£7_r71r(’c7f7f + qjﬁn)’c;}rq’ne = (I)GK'C;UIT‘DHG + qj@ﬂﬁ;ﬁlftpnﬂﬁ;f}fd)ne <1,

which completes step b.
Now step c. Take K = £L;1®, . L7L0Q, »1in (46) and note that @ = K" 72. First,

(41)
Anax( L7 P lzr?) = A L7i *AATL7H) = hnas(ATL72A) = (@) <M1, (47)
where A is defined in L7, step 1. Now, write K~ QK = K" £,,K + K" ®,.K and note that

“n 1
K™ ®prK = K¥LYHLY 2D rr LYK < — K LrrK,

53F0r any k7 m, [E[(Skm - ﬂ;m)ﬁ;fvl’l’l(e*’ﬂ:’l) | A] = Im E} [E[(ylkm - ﬂim)yl]mAernjm | A] = Im{ﬂz[gfkmAgilkm I
A] - 7§, Zj [E[g?}mAézijm | A]} = 0, noting that g?}mAu”*

% P e *
wijm — gﬂijm gijmgrrjm/gjm'
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such that K” @, K is negligible relative to K~ £, K.

KL K = Qorlk® Lk PrnlzhOns < 1 Qonlik®rnlnkns = T RV ® < BoASS < 1,
and hence (@ < 1. Since I'y < 1 by definition, this completes step c.
We now have 4y ~ (£g — R7#) + (dg — RY D). We continue with step d. First, using Zg and &,
defined in theorem 2, step 2, &y = Dy PE = Dy P PB(B"B)"'B"¢ ~ EgB ¢, and RV b, = R'D;PE =
R'D, PsPB(B'B)'B”¢ ~ =,B" £, analogous to (45). This completes step d. So we can write,

o =~ Z(ﬁem LozmLarmTm + mgm Z T (48)

m

Finally, stepe. Let ¥ = I'p Zm V(T,)Ig. ByD,{T,,} areindependent and so are {J,,} = {179_1/ [Tyl
We only need to verify the Lindeberg condition (Davidson, 1994, 23.6), which in view of our as-
sumptions, notably I[ii] is not in doubt. Hence, 3, 7, i N(0,1). Thus, by Cramér’s theorem,
Teds = V32T Y Tm it N(0,13), where

V= lim (% ; VI,lp) = lim [re([Egge + E[E(BvVévB)Ev)F@]. O
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C Identifying unobserved heterogeneity from micro data

In this appendix we discuss a specific example to illustrate the underlying variation in the micro
sample that provides identification of 8” in our parametric model. This example represents a special
case of the nonparametric arguments in Berry and Haile (2024).

Consider a simple case of a single market with two products and an outside good. There is a single

demographic variable, so z; is a scalar.>* Utility for product j is

uj =6+ szj(l)zi + GVxJ.(Z)vi + &),
where the product characteristicsare x® = [1 0]%,x® =[1 1]".The demographic variable shifts
utility of good 1 only, and the single random coefficient induces correlation in the utilities of the two
inside goods. As is typical, in this example v; has a standard normal distribution.

Suppose we observe a random sample of microdata {y;., z;}. The micro data nonparametrically
identifies the function 7% = P(y;. = 1|z, x). Fig. 8 plots this function over z € [—1, 1] for three different
parametrization of the model, namely 8” = {0, 1,2} with § = (—.25,25)" and 6% = 2. Intuitively, the
share of good 1 rises with z in all three panels. However, the slope differs based on the value of 6”. The
other notable difference is that as 6” increases, z has a larger impact on the share of good 2, 75, relative
to the outside good, 7§. Since the utilities of goods 1 and 2 are increasingly correlated as 6 grows, it
becomes more likely that consumers are on the margin between the two inside goods than between
good 1 and the outside good. Therefore, a slight increase in z induces relatively more substitution away

from good 2 than the outside good.

6" =0 0" =1 0 =2
0.8 0.8 0.8
Good 1
== =Good 2
0.6 0.6 0.6 Outside Good ¢
~ o =~ o~ - ~ - o
Ne 0.4 ~ Ne 0.4 T~ Ne 0.4 S~e
N > ~ = ~. = ~
0.2 ~ 0.2 S 0.2 S
0 0 0
-1 0 1 -1 0 1 -1 0 1
z Z. z

Figure 8: Conditional shares 7% are identified by the micro sample.

We can also nonparametrically identify the derivatives of 7. Given our special case we have, d, 7 =
620, 7", where we employ the fact that z only affects the utility of good 1. Taking a ratio of these gives
us diversion with respect to utility from good 1 to good 2 and from good 1 to the outside good for every
value of z, i.e., for j = {0, 2},

d,f aulﬂ T v
Equation (49) provides intuitive variation with which to identify 6”. To see this, recall that when 6” = 0
then we have multinomial logit demand. This implies that diversion is a function of conditional choice
probabilities: if 6¥ = 0 then Dlzjl = 77/(1 — f). Moreover, due to the independence of irrelevant

alternatives property, diversion will be constant over z.

4Since there is a single market in this section, we drop m from the notation.
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Figure 9: Diversion and Demographics

Fig. 9 illustrates the implications of diversion for different 6”. The first panel depicts diversion with
respect to utility from good 1 to good 2 as a function of z, i.e. Df,. As predicted, diversion is constant in z
for 6 = 0, yetitis decreasing for 6” > 0. The reason for the decline can be seen in fig. 8: as z increases,
the conditional share of good 2 falls more rapidly for 6” > 0, so a larger proportion of switchers must
come from the outside good in response to an increase in z.

The second panel of fig. 9 plots the logit-implied diversion ratios computed from conditional shares
generated by the three parameterizations of 6”. If 6” = 0, we exactly reproduce the constant diversion
rate from the first panel. For 6” > 0, we see decreasing functions that are below the line for 6” = 0. The
reason these functions are decreasing is the same as for the first panel. The reason the level of the logit-
predicted diversion decreases in 6” is that diversion between goods 1 and 2 is more than proportional to
shares when 6” > 0. An illustration of diversion between good 1 and the outside good would produce a
mirror image since increasing 6¥ weakens diversion between these goods.

The third panel of fig. 9 takes the difference of the first two panels. As 6" rises, the logit model under-
predicts diversion between the two inside goods. Moreover, the degree of under-prediction varies in
z. This suggests moments with which to identify 6” by comparing the estimated diversion rate to the
model-predicted diversion rate. In this exercise we have fixed the values of the other parameters 6% and
d. In practice, the described moments for 8” would need to be paired with commonly used moments to
identify 67, 8; e.g., matching market shares for § and matching correlations between demographics and
product characteristics for 6%. An advantage of the likelihood approach to using moments is that it fully
exploits all of the information in the micro sample.

So far we have focused on a special case in which it is clear that the micro sample has so much valuable
information to identify 8" that the ¥ term of our estimator would be redundant. To see a case where ¥
is necessary for identification, simply set 6% = 0 in our example. Now J,7;" = 0 and the moments we
have suggested are undefined and no longer informative.

In our example, we specified z to shift the utility of exactly one good and restricted 6” to have
dimension one. There are more general conditions for identification of 6” from consumer demographics.
uZ is typically specified as a linear combination of interactions between product characteristics and

consumer demographics, e.g.,
M (xj, 233 0%) = xjv@zzl- = Z Z Gz(k’d)x}‘zfl,
k d

where ©7 is a matrix with elements 62 With this form we have,



K 7
dyaft? = D) Y, 02kdxks, 77, (50)
k=1¢=1
In matrix notation, (50) can be written as
d,v7t? = 8,vm?0,vu = 0,vw?d,vu? = 9,7 m?X" O%. (51)

Thus, only if X* @7 has maximum column rank, does there exist a unique 9,7 that solves (51). In other
words, if this rank condition holds, then we can recover the substitution matrix for all z from 6% and the
data. Flexibility of the substitution matrix is the primary motivation for the introduction of random
coefficients. Since the introduction of 6” imposes parametric structure, nonparametric identification of

the full substitution matrix is sufficient to identify 6”.

D Optimal instruments for CLEER

This appendix shows that CLEER & = (8, §) achieves the semiparametric efficiency bound for the
model presented in section 2.1.

Following C87, we show the result for all multinomial submodels® and rely on the arguments in C87
to take us to the general case. The derivation below differs from C87 only because CLEER combines
moments with a likelihood.

We will work with the superpopulation likelihood of the model after concentrating out 7. Specifically,
we show that if the distribution of product-level variables is multinomial, then the Hessian of the
superpopulation loglikelihood constrained to satisfy the moments with respect to « = (6, §) coincides
(up to asymptotically negligible terms) with the Hessian of CLEER if instruments are chosen according
to (23). Asthe Hessians are equivalent, CLEER attains the Cramér Rao lower bound for any multinomial
submodel.

We first write the moment conditions for an arbitrary multinomial submodel. Treating N,,, as random
and making the notational simplification of identical J,,, across markets, let ¢,,, = [X;, byy» Emns Nin 1™ »
where x,,, b, are vectorized-versions of X,,,, B,,,. In view of the multinomial assumption, we follow C87

and express the (population) PLMs as
0= Z q*(L)H(v)[8(6, vy) — Xy, 8] = Z q; He (o), (52)
t t

where qf = P(c,, = v;) with vy, ..., v; the values that c,,, can take, H; = H(B,,) a matrix of instruments,
e (@) = 8,,(6) — Xy, 8 with By, Xy, 8, the values of 8,,, (with 7 partialed out) if c,,, = v,. Equation (52)
is an unconditional moment condition since H incorporates all possible combinations of instrument
values.

We now construct the parametric likelihood of the submodel. Since we do not know the values of
the g/, the objective function will now have q,’s in them as an auxiliary parameter. Let a,, be a vector
containing all (¥;,;, Zim» Dir)’s in a given market, where the value of z;,, is only observed if D;;,, = 1.
The superpopulation loglikelihood incorporating the multinomial distribution of the product-level

variables is
Aa, q) =M D q; [L(a) + logq,], (53)
t

35A parametric submodel is any given parametric model that satisfies the imposed conditions. A multinomial submodel is a
parametric submodel in which certain variables are assumed to have a multinomial distribution.



where [,is the expected value of the loglikelihood for a single market conditional on ¢,,, = v;, after
concentrating out 7,,,. Without [, in (53), the optimal instruments defined below would exactly mirror
C87.

Next, we derive the Hessian of (53) at its optimum. For given value of o, maximizing (53) with respect

togsubjectto 3} q; = land ), q.He;(a) = 0,yields the solution

* -1
q = 1+ 07, ,;I;Htet(e’ ‘8),whereI = (Zt: qutetethtv) Zt: qiHe; = B1(6, ﬁ); q; Hee (o).

Plugging g, back into (53) yields
(a) =M Y. q;{L(a) —log[l + ["(@)H,e, ()]} + M ) q; logq; .
t t
Letting 8" = 3} q{H;0,ve;(a*), and noting that () = 0 for all @, the Hessian of 2 at the truth is
* l *¥Vgx—1 ¥
M(I]_aa S677R e ) (54)

Taking the inverse of the (minus) Hessian yields the Cramér Rao lower bound.

Finally, we show that minus (54) coincides with the Hessian of the CLEER superpopulation objective
function if ¢, has a multinomial distribution and the instruments are chosen according to (23). To
see this, we first note that L}, = E[Lggm — LoxmLrrmLrom), and that all other elements of L},
are zero since 8 does not enter the likelihood. That leaves us with the *”8*~!®* component. Let
{B(x)} be the values that B, can take, qz‘k) = Zt qi 1By = Byy) = P(By, = By, Hiy = H(B),
Ve = V(& | By = Byyy), and

v -1 v
ng - £67rm£7r71m [D;Erm

B,, =B )
_ern | m (k)

qar v
A= 2L 1(By, = Bip))dger =[E(
k Zt: a0 vt (k)/)Yatt

Now, since S” %S < S"S for any matrices R, S,%

*V - * . 4 v -1 v
678" 716" = 3 Ao 2 4o Huo i) 2 dinHooAR
k k k
<3 QoA AL = EBR VB, (55)
k

Now consider the Hessian of the PLM portion of the CLEER objective function at the truth divided by

M using our proposed instruments,

(Dg — 390" D,)BP*
—Xx" Bopt

1
M

v
l(BOptVVgB"p‘)‘1 [(DF — 850"D)BP —X"B®| ~EB V; B,

i.e. up to negligible terms it is the right-hand side in (55). To conclude the argument, the left-hand side
of (55) cannot be less than the right-hand side since that would make our estimator more efficient than
the maximum likelihood estimator in the parametric submodel.>” So the left-hand side and right-hand

side in (55) must be equal. Consequently, the Hessian of CLEER using optimal instruments at the truth

*Make S” = [, /qa)AlVl_l/z, e qz‘k)AEVE_l/Z] € R4«*(KJm) where k is the number of values B,, can take.
7Recall that the Cramér Rao lower bound is the inverse of (minus) the Hessian of a loglikelihood function.



is (54). So CLEER achieves the Cramér Rao bound in every multinomial submodel.

E Estimator Comparison

In this appendix, we present additional details on the comparison between CLEER and estimators
employed in the applied literatuere.

E.1 Schematic Sketch of Section section 6

Fig. 10 provides a summary of the steps presented in section 6. The top node in the tree represents
CLEER. Each node below represents an alteration to arrive at an alternative estimator. The large
pink box representing section 6.3 proposes several alternative estimators which we will rationalize
as modifications of the score. One can stop the process at any node in the tree, so in total the figure
describes nine alternative estimators (including share-constrained likelihood, see fn. 32). At each node,
we briefly list the primary costs (red) and benefits (green) of the step relating to identification (&3),
econometric efficiency (both rate and variance, #-), inference (1EB), computational tractability (),
data requirements ($$) and experience in applied work (??). Each step downward in the tree leads
to an estimator that is weakly less efficient than its parent. To our knowledge, all estimators that have
been applied in empirical work on discrete choice demand are covered here.

E.2 Share Constraint

In section 6.2 we listed three drawbacks to the imposition of share constraints on a likelihood or
GMM estimator relating to robustness to zero shares, efficiency and inference. This section discusses
each of these issues in turn.

First, because it is a one to one mapping on the interior of the probability simplex, doing so rules out
the presence of zero observed shares. Moreover, the contraction can become unstable as observed shares
tend towards zero and ||D | = ||c37T;1 d,n|| tends to infinity. While this is reasonable for conditional
choice probabilities, applied cases have arisen where zero shares are observed in data due to finite
market sizes N,,, and small choice probabilities. In this case, even when shares are non-zero, they will
be imprecisely estimated. CLEER offers some robustness to zero or small shares because it does not
enforce unconditional choice probabilities equal market shares.

Second, imposing the share constraints introduces a potential loss of efficiency. Suppose that 6*Z # 0
and I is large relative to M such that contribution of the PLMs to the estimation of 67 are asymptotically
negligible (as discussed in section 5). Then this efficiency loss occurs unless the population in the
smallest market diverges faster than both I and M. Examples 1 and 2 in Grieco et al. (2023b) illustrate
that this efficiency loss can be substantial.

For intuition, we now show that imposing share constraints is equivalent to placing infinite weight on
the macro likelihood in CLEER. To see this, separate out the micro and macro terms of log L. as specified
in (7) and consider the derivative of the macro loglikelihood with respect to §,i.e. forallm =1,... .M
andall j =1,...,J,,

Im

Sk oz, v)(ﬂ(k = J) = 4m(z, v))dF(v)dG(z) —0, (56)
k=0 Fkm

where 6 was defined in (2). Setting 8 = 8(6, s) such that o(6,§) = s solves (56) as the left hand side

becomes

k=0

Im
fzsjm(z, v)dF(v)dG(z) — fAjm(Z, V) Z S1em(2,v) AF(v)AG(2).
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Figure 10: Schematic comparison of our estimator to alternatives. See text for details.

By Berry (1994), this solution is unique for every 6. Therefore, imposing share constraints effectively
places infinite weight on this moment.’® It is well known from standard GMM theory that placing
infinite weight on a subset of moments is generally inefficient. As noted, in our setting, there would be
an efficiency loss unless I and M were negligibly small compared to N,,, because then the macro score
runs over more terms than the other moments.

Third, and most importantly, assuming s = 7* will invalidate standard inference unless the total

8If one places more weight on a moment in GMM estimation (without changing the rest of the weight matrix) then that
moment at the estimate gets closer to zero. If one increases the weight on a moment to infinity, then that moment evaluated
at the estimate must go to zero.



number of consumers in all markets is negligible compared to the square root of the population in
the smallest market. If one treats §(6, 7*) as a known deterministic function of 6, one ignores the
uncertainty arising from approximating 7z* with observed market shares. This will result in a downward
bias in the standard errors for 8. Indeed, for some linear combinations of §*, asymptotics are governed
by the estimation error in market shares unless I is negligibly small compared to min,, \/N_m .

To illustrate, consider inference on a linear combination of §,;,. Imposing share constraints, it would

be tempting to use the delta method to conclude that for any vector v # 0,
VIV (G = 57)

d
— N(0,1), (57)
/0787 Dm(©. 5) D6 500

where Dg,, is the derivative of §,, with respect to 8 and 13 is the asymptotic variance of 8. This
ignores sampling error in the aggregate data, which becomes a problem for all vectors v for which
U Dg,(6%, 7*) = 0, where the left-hand side of (57) diverges. The space of such vectors v is of
dimension no less than J,, — dg > 0 since 8,,(-,7%): R% — R/m, Using the bootstrap the way it is
typically used does not solve this problem.®® We provide the correct variance formulas for the GMM
estimators under strong micro identification when I > M in app. F. Grieco et al. (2023b) provides a
numerical example that shows that imposing the share constraint without adjusting the standard errors
can lead to standard errors being off by an arbitrarily large factor. This issue extends to any estimator in
which the share constraints are imposed to hold. In contrast, inference using CLEER can be done using
standard extremum estimation techniques.5!
E.3 Conformant GMM

This subsection presents the approximation to the derivative of log L with respect to 8” that can be
employed to avoid simulation bias in a GMM estimator.

First, note that®? Z " Sim( XV — k " SlemXkmV*) = 0, such that (26) can be expressed as
M Ny Jm Yijm — Zlm
Jm
Z Z Diypy———— fAjm(zlm,v)(x vk — Z kav /skm(zlm,v))d.F(v)
m=1i=1 j=0 o}m k=0

because summing the integrand over j equals zero and ¢ ”" /GZ”" = 1. Noting that the conditional
expectation of the last displayed equation given all z’s and x’s equals zero at the truth and that the
denominator only depends on z’s and x’s, we can remove the weighting in the denominator. Removing
the denominator affects efficiency but still provides a valid moment. So we are left with a sum over the
product of two integrals, namely

M Ny I T

Sy f DinelYijm — Sm(Zims v IAF () f Sinims X = 3, Sk i V) ¥ JOF ). (58)

m=1i=1 j=0 k=0

*Indeed, then by a Taylor expansion,

U [8m(6, 5m)=8m(6, p)] = V7 [8m(8, Sm) = Sm(6, )] + V7D, (6~ 0*)+2 Zv](e 6*)700678m(6%, Tim)(6 — 6%),

<N;;? =0 <I-1

such that asymptotics are governed by the first right-hand side term unless I/4/ N,,, vanishes.
%00ne would have to draw the bootstrap population from the superpopulation, which is impossible.
1We are implicitly assuming that the integrals can be computed sufficiently accurately so as not to affect the asymptotics.
62We set X, = 0 without loss of generality.



Thus, approximating the integrals with sums using mutually independent Monte Carlo draws results in
a simulated moment that has mean zero because simulation error enters linearly.®> While utilizing this
moment will result in an estimator with the same convergence rates as our estimator, and so will satisfy

conformance, it will not be efficient.

F Variance comparison under strong identification

This appendix provides a variance comparison between the CLEER (8, §) and the corresponding
share constrained estimator (65HCON, §SHCON) that maximizes the mixed logit objective function subject
to the share constraints. It then demonstrates that for the share constrained estimator, ignoring the
contribution of the estimation of 7* often results in incorrect inference. Throughout, we focus on the
strong micro identification case and I > M so that we can ignore & which is asymptotically negligible
for the estimation of (6%, §*).

First, we compare the asymptotic variance of linear combinations of the estimators (é, ) ) and
(GSHCON SSHCON) 64 gpecifically, let the matrix 15 5k be such that for any conformable C with a fixed

number of columns,

6—0*| a
(CYYGEERC)-12CY 5 5*1 - N(0,1). (59)

Analogously, the matrix 135"

CON does the same for the share constrained estimator with the identical C.
We can ascertain relative efficiency by comparing the elements of 1528 and V1“ON. For Qf, =

Log — 5971[’7;711'57@:/[ = [;7;711757{9, ® = Dg — DA, we have

(Q5)7! Q%) 16

CLEER _
G5 ©6(Q5,)'6" +D,L7LD}

Next, consider V5

CON This estimator is equivalent to placing infinite weight on £®, however, since
g = 0, the other terms (£* and in general @, though not for this example) will still appear in the score
and Hessian. Indeed, note that £ = Lgetc. Sofor A = L2 L0, Lo = LB, + Lﬂeﬂgellleﬂ, and

Q5o = Loo — LorLrxLne. and 6 = Dy — D, AL3Q5,, we have,

()™ (05,)7167

1SHCON _
(95! 6(Q5,)716" + D, L;LDy

To see directly that CLEER is at least as efficient for 6* as SHCON, note first that £, — L7 = Lo —
Lrolgalon = Lyn — LooLeg LY > 0and then that QFy — OF; = Lo (Lrk — L7k)Lre > 0.
Next, we discuss the potential hazards of conducting inference on the share constrained estimator.

H

The fundamental issue is that 7* is estimated by s, which is accounted for in 134°“°N but often neglected

in practice. If 7* were known, one could approximate 17655HC°N by an oracle equivalent,

-1 11V
‘566 L@@ D@

MORACLE _
_ —_ v
Delyzs DolzaDy

Cl)

3This is necessary to satisfy condition (iii) of Theorem 3 in PP89. Many of the other assumptions in PP89 hold trivially
because our simulated moment (58) is infinitely differentiable in 8 and also infinitely differentiable in the simulation
draws due to the properties of the mixed logit demand specification (i.e., s is infinitely differentiable with respect to v).

%4Since the dimension of & grows with M, we focus on linear combinations of fixed length. That is, C has a fixed number of
columns while its number of rows grows with M.



ORACLE for V5EER in (59) does not result in an asymptotically normal distribu-

However, substituting V3
tion for many choices of C when 7* is estimated by s. To see why, note that since Dg has many more
rows than it has columns, Dg£ 53Dy has many eigenvalues equal to zero and so (C” VGEERC) ™12 is
undefined. For the corresponding eigenvector-directions, the term D, £ 71D, is first order and hence

needed to avoid this degeneracy. So an acceptable substitute under the assumption N,;,, > I,,, would be,

-1 —1nV
1JCORRECTED _ Loo LoaDe
_ _ v — v
Delzs DelgoDg + D L7xDx
needed

However, to our knowledge, this method of inference has never been applied in any estimator employing

share constraints.

G Computation

While CLEER is of theoretical interest, it must also be computationally tractable in order to be
appropriate for applied use. This appendix discusses two critical computational aspects of our estimator.
First, CLEER involves an optimization over d which is a vector of length J. In modern datasets, the
number of products across all markets can run into the hundreds of thousands, posing a potential
problem for nonlinear optimization. However, there are a number of features of our optimization
problem that simplify this task considerably. Second, any estimator must numerically approximate
integrals over demographics z and taste shocks 1.5 The choice of integration method will impact that
accuracy of the estimator. We discuss several approaches in app. G.2.
G.1 Dimensionality

We now describe two feasible algorithms for the computation of CLEER which make use of Newton’s
method with Trust Regions.®® Recall from (5) that our optimization problem is

A

(8,8,6) = arg min(— log 1.(6, 8) + #(B, 5)).
5.6,8

Like BLP95, we start by concentrating out § which leaves
(6,8) = arg min(— log (6, 8) + #{A(5), 5}). (60)
0,8

We then have two levels of optimization. In the inner optimization we compute  as a function of 6, i.e.
for each candidate value 8 we find a minimizer 8(). In the outer optimization we then minimize over
6.

A

6= arg;nin(— log L(6,6(6)) + 71A(3(6)), 8(6)}) (61)

s.t.: 8(0) = arg min(— log 1.(6, 8) + 2{(5), 5})
S

This approach is similar to that in BLP95 with the important exception that the inner loop objective is to
optimize (5)—the same as the outer loop objective—rather than satisfying the share constraint 7* = s.

The outer loop is over a low dimensional parameter vector, albeit computations of the derivatives

5The exception to this is the classical mixed logit, which only uses micro data and hence only integrates over v.
%As noted below, one of these algorithms computes an estimator that is asymptotically equivalent to CLEER but less
computationally intensive.
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involves application of the chain rule to account for inner loop optimization.®’

The high-dimensional problem is now confined to the inner loop. For BLP95, tractability followed
from the existence of a contraction mapping to compute 7* = s. For our problem, first suppose that (5)
is just identified. In this case, 2[(8), 8] = 0 for all values of 8, in which case we only need to minimize
—log L in the inner loop. Conveniently, — log L is additively separable across markets in §,,, in each
8,,. So we can parallelize the computation of ,,(6) market by market, and each computation is highly
tractable.

The overidentified case is more complicated. Since 7[3(5), 8] > 0and is not additively separable in
7, However, there are several convenient features which make the inner loop of (61) tractable, even in
this case. To simplify exposition but without loss of generality, we will take W in the definition of ¥ in
(9) to be (B'B)~! where Bis aJ X dj, matrix with rows bjm,

The first such feature is that $(8) is simply a linear IV estimator, i.e. 3(8) = (X~ FX) X P53,
with #; = B(B"B)~'B” an orthogonal projection matrix. Second, 7 is quadratic in 8. Thus, writing
Pppx = PpX(X” PX)~1X" P, the minimand of (60) of becomes

the instruments introduced in (10).

—log (6, 8) + %5V(9>B — B )8 (62)

Third, (62) combines the computationally convenient likelihood with a convex term, so the resulting
objective can be optimized over § via Newton’s method. Fourth, barring collinearities the matrix 5 —
Pp,x is a positive semidefinite matrix of rank dj, — dg. Note that by the spectral decomposition, F — %, x
can hence be expressed in the form KX forads X (dj, — dg) matrix K. This is convenient because X may
include many exogenous regressors (eg., brand or product—rather than product-market—dummies)
which also appear in B. Such X is not unique, but all choices are equivalent.®®

We now turn to the primary complication of applying Newton’s method to optimize (62) over § in
the inner loop: computation of the inverse of the Hessian (with respect to §). Just storing a Hessian in
100,000 parameters would take 80Gb of memory; the computational cost of taking the inverse is cubic
in ds and the result could be subject to substantial numerical error. Fortunately, we do not need to store
or directly invert the full Hessian of (62), H + XX, where H is the Hessian of — log L. Instead, we can
compute the inverse Hessian exploiting the above-mentioned features. The inverse of the Hessian of
(62) can by the Woodbury matrix identity be written as H~! — H' X (1 + X" H %)\ K "H™!,

Since log L is additively separable in the &,,,’s, H is block diagonal, so H~! can be efficiently computed
and stored. To appreciate the importance of this feature, note that if one has 1,000 markets with
100 inside goods in each market, the problem reduces from inverting a full 100,000 by 100,000
matrix H + XX to inverting a thousand 100 by 100 matrices, which is both much less demanding
computationally and reduces memory demand by a factor 1,000 (i.e., 100 0002/(100? x 1 000)). This

7Note that, as in any nested optimization problem, the outer loop of an optimization problem with objective function of the
form f(6, &) has gradient f[8, 5°'(8)] since the inner loop solution §°°'(8) has made f5[8, 85°/(8)] = 0 which, by
the implicit function theorem, implies that do+8%°(8) = —f35f se. Hence, the Hessian becomes fgg — fosf 54 s6- In
practice, we do use a change of variables on the 8”’s in that we optimize over their logarithms to allow for an unconstrained
optimization.

%To obtain an explicit form for X, let C denote the columns that B and X have in common and B, X the columns that
are unique to each matrix. Then, an explicit form is K = UgM. Wy with Ug, Ux matrices with orthonormal columns
spanning the column spaces of McB, MoX, respectlvely, and M denoting an annihilator matrix. This follows by
expressing Pg — Pp,x = (Pc + Pp) — (Pc + Pp,x) = P — Py, x and applying the singular value decomposition to
Band X.
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makes the optimization step of the inner loop practical for many products.
For even larger problems, one may consider an alternative approach which is implemented in the
Grumps package as the “cheap” estimator. Here, we alter the inner loop dropping ¥, so the full problem

becomes,

6= argemin(— log L(8,6(6)) + 71A(8(6)), 6(6)}) (63)

s.t.: §(6) = arg min — log L.(, &)
5

This yields a different, but asymptotically equivalent, estimator to CLEER. However, this estimator is
not robust to zero shares. We further note that the “cheap” estiamator may be useful as a warm start for
CLEER in some cases.

G.2 Numerical integration

Aswe have pointed out, the largest disadvantage of our estimator is that a computable version relies
on numerical integration. This is costly since to avoid affecting the asymptotic behavior, numerical
integration error must be negligible. Of course, as always, we can arbitrarily reduce the numerical
approximation error by incurring a higher computational cost. In contrast, GMM estimators can be
computed via the method of simulated moments (MSM). MSM can achieve the same convergence rate
as its theoretical counterpart by averaging over noisy approximations of these integrals. However, as
discussed section 6.3.1, numerical approximation of the share inversion adds an additional source of
complexity for estimators in our setting that enforce share constraints.

CLEER evaluates two types of integrals, those over v (e.g., 7%,) and those over both v and z (e.g., 7).
This distinction suggests different integration methods for each type.

Quadrature methods are well suited for micro integrals over v. The distribution of v is assumed known
and is usually a familiar and tractable one, often normal. Moreover, v is usually of small dimension, so
the curse of dimensionality associated with tensor product quadrature methods is less binding.®® We
examine the sensitivity of CLEER’s numerical performance to the number of nodes used for numerical
integration in section 7.4.

The integrals over both z and v are more difficult to compute. In addition to (z,v) being higher
dimensional than v, the distribution of z is usually informed by data and so less amenable to quadrature
methods (e.g., the distribution of income in the consumer population). On the other hand, they are
only computed for each product (J) rather than each product-consumer pair (Zm Jnlm)- Given this,
(quasi-)Monte Carlo methods with a high number of draws are appropriate, albeit this requires the
number of Monte Carlo draws to grow faster than the square of the prevailing convergence rate, which
is the same number as is needed for MSM not to lose efficiency. In our implementation for section 7, we

use 10,000 quasi-monte carlo draws to approximate these integral for all estimators.

H Monte Carlo Design
In this appendix we present the full details of our Monte Carlo design and implementation. While
some of this material is redundant with the summary presented in section 7, it is also included here in

order to provide for a single, comprehensive overview.

1f v is of high dimension, sparse quadrature methods can be viable alternatives. The designed quadrature approach of
Bansal et al. (2021) may be particularly attractive as all nodes have positive weights.
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H.1 Data Generating Process

Our empirical design includes two observable product characteristics (x} Zm), with associated

]m’

parameters (37, 55 ); two demographic characteristics (z z},,) interacted with a single corresponding

ime
product characteristic with associated parameters (657, 65%); and two random coefficients (6,7, 657).
Mean product quality is specified as 8%, = 57 + ﬁ xjm + B3 x3,,, + &m,» The unobservable product
characteristic &, is also distributed as a standard normal 1ndependent across jand m.”
We specify that one of the observable product characteristics, x!, is correlated with unobserved
characteristics §j,,, and thus endogenous. Specifically, so that x! is normally distributed, let a vector
of instruments b! and random noise u both be vectors drawn from a standard normal distribution

independent of £ and each other. Then construct x! according to,

= Webjy, + V1 — wg (Weltj + V1 — wi§;,) (64)

where w, = w(a) = a/\/m for a € [0,1] governs the strength of the instrument b! and
w, = w(c) for ¢ € [0, 1] governs the degree to which the remaining variation in x! is due to random
noise versus the product’s unobserved quality. In estimation, we use b! as an observed instrument for
x'. The remaining characteristic szm is exogenous and drawn from a standard normal independent of
all other variables.

Consumers have observable characteristics, z;,, = (z},,, z%,,) thatare drawn (independently) from the
standard normal distribution. Preference heterogeneity based on observable consumer characteristics
is parameterized according to u Z”" =6/ zlmxj L+ 63722 X2 Xjm>

Asinsection 7, altering 6*# affects the strength of identification of 6*” via the micro data by increasing
the variation in utility across consumers.

Consumers have unobserved characteristics v;,,, = (v\,,, ¥%,,) which are independent and drawn from

Vim>
the standard normal distribution. Following the model as well as standard practice, this distribution
is assumed to be known to the researcher. The unobserved heterogeneity term in utility is u}’,fﬂm =
O VX + 637V X

In addition to the instrument b! for x! described above as well as a constant and the exogenous char-
acteristic x2, we utilize three additional “BLP instruments” constructed from product characteristics

for the PLMs (4). We construct a differentiation IV for x? following GH20. Specifically, for b?> we use,

D> O — X35 (65)
J'€Im\j

This instrument is valid since it depends entirely on the exogenous vector x2. We also construct the
differentiation instrument for x!. Here, we must make use of b! following GH20. That is, we run a first
stage regression of x! on x? and b! and use the resulting predictions %! to construct b* analogous to (65).
The final instrument is simply the number of products in each market m. This varies across markets but
not within market. Since d, = 6 > dg = 3, ¥ is overidentified for 8* and the extra exclusion restrictions
are potentially useful to identify 6*. Note that since dg = 4, the score of the likelihood for CLEER and
MDLE, and the two covariance moments for GMM-M are necessary to identify the full parameter vector.

7In a previous version of this paper (Grieco et al., 2023b), we have used a Pareto distribution for §j,,. The Pareto distribution
more closely mimics the “80/20” rule commonly observed in market share data. However, the Pareto distribution has
thicker tails than allowed by G. This choice results in a bias in the PLMs which is visible for some simulations. In practice
CLEER still outperforms the other estimators.
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We include the same instruments in all three of the estimators we consider.
H.2 Baseline Parameterization

We organize all of our experiments around a baseline specification of the data generating process,
which we now describe. Except where they are explicitly varied, these specifications remain constant
throughout section 7.

The parameters 8* = [—6,1,1]7,6%% = [1,1]",and 8*” = [1, 1]" were chosen so that in the baseline
specification, average share of the inside products is .0206; and the first decile of shares is 0.0006 on
average. The average share of the outside good is .6095, with a standard deviation of .1326. Weleta = 0.5
and ¢ = 0.5; which results in a the mean F-stat for the first stage regression of x! on the instruments of
190.71 with a standard deviation of 18.05 across our 1000 simulations.

We draw data for M = 50 markets. Products in each market are independent of other markets. We
vary the number of products in each market with five markets each of {10, 12, 14, 16, 18, 20, 22, 24, 26,
28} products.”! There are N,,, = 100 000 consumers in each market. We take a random sample (without
replacement) of size I,,, = 1000 for the micro dataset of each market.

All three estimators must integrate over both v and z to compute the function 7z; we implement this
integration using Monte Carlo simulation with 10 000 consumer draws. The two likelihood estimators
must also compute 7z%im for each observation in the consumer sample. We use 11-point Gaussian
quadrature in both dimensions of v, but evaluate this choice in section 7.4.

H.3 Implementation

For all experiments, we estimate the model for each of 1 000 replications of the data generating
process. In rare instances, we draw a dataset where some product has a share of zero, in which case
we discard the draw and sample again. Because GMM-M requires s, > 0, it is unable to handle these
cases, our other estimators may also be affected as we describe in app. I. In practice, most practitioners
drop products when no sales are observed, since it is difficult to determine whether they were actually
available for purchase. In, app. I, we investigate performance of all three estimators following this
practice. For CLEER and MDLE we use a single, arbitrary, starting point. For GMM-M, which is known
to have local optima, we multi-start from three values, including the truth. From the three runs, we use
the one generating the smallest minimum.

Finally, we must choose weight matrices for all three estimators. For CLEER and MDLE two step,
we use the standard initial choice of (BB)~!. Hence, our results do not take advantage of optimal
instruments. For GMM-M, we follow the pyblp default, which constructs a weight matrix for both
PLMs and micro-moments that would be optimal if the initial parameter were the truth. Note that since
we perform a modest multistart for GMM-M with one starting point being the truth, this means that
one of the GMM-M implementations utilizes the true optimal weight matrix (as opposed to a consistent
estimate thereof).

For these reasons, if one wishes to view our results as a comparison between the implementations of
the three estimators—which is not our goal—one should view results in favor of CLEER or MDLE as
conservative. However, our primary purpose with these experiments is to straightforwardly illustrate

the theoretical properties of CLEER and the alternative estimators across a variety of designs.

"IFor the experiment varying the number of markets, we similarly vary the number of products in each market with one
market of {10, 12, 14, 16, 18, 20, 22, 24, 26, 28} products for M = 10, and 100 markets of {10, 12, 14, 16, 18, 20, 22, 24, 26,
28} products for M = 1 000.
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I Small market population

In this appendix we discuss performance of CLEER and the other estimators presented in section 7
when the population size is small. We also present Monte Carlo results for this situation.

When N, is low, two issues arise. First, sampling error in s increases, which makes imposing the
share constraint more costly in terms of efficiency. This impacts GMM-M but not CLEER or MDLE.

Second, when N, is small, the probability that some offered products are not purchased, so s;,, = 0,
increases. When s;,,, = 0, the share constraint cannot be solved, making it impossible to compute an
estimate for our GMM-M estimator. CLEER and the MDLE two step face similar but less severe issues
when a product is not purchased.

The MDLE objective function log L is well defined when Sim = 0, however its score with respect to
jm is negative for all finite djm.n In our view, the first step of MDLE is quite robust, as one can simply
drop &j,, from the parameter set when s;,, = 0 without affecting the likelihood to recover 6 and the
remaining elements of §.”> However, dropping jm does impact the PLMs, so the second step of MDLE
will suffer from selection bias in the estimation of 3.

In principle, CLEER can address this issue when dj, > dg, since once the PLMs are added to the
objective function, it is no longer optimal to let §;,, — —oo, as this will cause ¥ to diverge, see (10).
However, once dj, — dg shares are zero in the data, ¥ can be set to 0 for any 6, so & must be estimated
from the micro data. If the number of zero shares is larger than dj, — dg, then the PLMs can be satisfied
with equality using only a subset of §;,,, for zero share products and the remainder are free diverge as
above. Consequently, CLEER can only be computed provided that the number of products with zero
shares is no greater than than d;, — dg. This means that while CLEER can be estimated for allowing the
presence of a small number of zeros, it will eventually break down for markets with very low N,,, as the
number of zero share products increases.

For empirical applications, practical considerations also arise when s;,,, = 0 is observed in data.
Foremost among them is that the researcher is usually uncertain as to whether or not product j was
actually available to consumers in market m as it may have been out of stock or simply not offered. The
issue of stock outs is broader than simply observing zero shares, but has been typically ignored in the
applied literature.”

In practice, applied researchers have commonly dropped products with zero market share from the
choice set of market m while assuming all other products were available to all consumers. We now
examine the impact of this practice when, following our model, all products are available but some
were not purchased by any consumer in the market population.

Specifically, we consider our baseline DGP from section 7, but lower the market population size from
100,000 in the baseline to N,,, = {10, 000; 5, 000; 1, 000}. This reduction in N,,, makes the probability of
drawing a product with a market share of 0 increase from being negligible in the baseline to 0.22, 0.90,
and 7.79 percent respectively. Consequently, the probability that a market contains a product with zero
share for these experiments is, 7.9, 28.22, and 92.18 percent. Thus we consider the three cases presented

to be examples of small, moderate, and extreme zero shares problems.

20ne can this immediately for L™ by examining (56). For L*, it is intuitive since O'fm > 0 for any finite §j,, and Z;’: o O =
1.

3Note that since & are location normalized against the outside goods, the remaining § will be unbiased provided s, > 0.

74An important exception is Conlon and Mortimer (2013), which leverages periodic observations of product availability to
estimate a demand model with endogenous stock outs. We do not consider availability of such data in our analysis.
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Figure 11: Distribution of parameters for different population sizes N,,,.

The distributions of our estimators are presented in fig. 11. To reiterate, when a product has a market
share of zero, it is dropped from the dataset prior to estimation, enabling all three estimators to be
computed. When N,,, = 10,000, there is relatively little difference between these results and our
baseline for any estimator. When N,,, = 5, 000, the variance of GMM-M appears to increase slightly for
8, and some bias for § appears for all three estimators. However, overall performance is acceptable. In
the extreme case where N,,, = 1, 000, the GMM-M estimator is severely biased for all parameters, this is
a direct result of its reliance on the product level moments which now suffer from significant selection
bias. CLEER is also biased for the same reason, but to a lesser extent as it combines information from the
biased PLMs and the likelihood. On the other hand, MDLE, which ignores the PLMs when estimating
6, remains unbiased for 8 and performs well.

All three estimators exhibit bias for . Interesting, the bias for MDLE and GMM-M are in opposite
directions. It is intuitive that the distribution of CLEER is between the other two estimators, however
there is no reason to expect CLEER will be unbiased for § in general.

To summarize these results, the standard practice of dropping zero or small share products, while
inducing bias, did not substantially affect any of the estimators. Bias did become apparent in our
extreme case once the share of products dropped rose to over 7 percent. Because this bias is entirely due
to selection affecting the PLMs, the first step of MDLE remains consistent even in the extreme case.

In cases where the share of zero share products significant and it is known these products were
available to consumers, our results indicate it may be fruitful to consider adjusting the second stage of
MDLE to account for selection. We leave such a possibility for future research.

J Technical Lemmas

In this appendix, we cover technical lemmas we refer to in our paper, which are relegated to the

online appendix due to space constraints.

J.1 Asymptotic normality of other parameters

Proof (of L1). The statement of L1 says that for 0 = [(B"¢)",£5,£5]" and w = [B7,67,67]7,
AYHIN)2AY () — w*) ~ AYD 4 N(0, 1), for matrices A, K.

Here we establish asymptotic normality of linear combinations of (8, 8, §). Theorem 2 is a special
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caseforA” = [@ [ @]. In theorem 2, we showed asymptotic normality of 8 by writing it as a linear

d
combination of 0. Specifically, L8 showed that 179_1/ ’I'pdo — N(0,1). Recalling (48) and substituting
F=L5 - Lo (s —7*) = Ly,

4?9 = (Z(EBrvngm + E@m - Lenm£7_r7lrm£7rm)) = [E [ —LenLE}z] 22
m
which implies for AY = 1,721 [E I —Lenzj,—t}f] we have A"0 5 (0,1). To show asymptotic
normality of linear combinations of (5, 6, 9), we reuse the same argument for a general A.
Before providing the general form of A, note that the initial steps are identical: The quadratic
approximation for (8, #) obtained in theorem 2 (steps I and 2) can be reused verbatim.
In the general case, A" will be of the form, (A” 7 1A)~V2AYY, where 7! is a sample analog of,

BB 0 0
HL=VQ0|A)=Y| 0 Lo Lo |V

0 Cn'e 57[7'[
For 7,
B¢ BY¢
A=) =AY |8-0" | =AY T, 6—06% | 2 AT Y, T30,
§— 8" —m*
where 173, 15, 15 are respectively given by,
(PX)tBTY 0 (PX)* I 0 O [ 0 | 0 0
0 I o [.|o I o].|0 -Q5 O DgPB*Y | —Lo LAE |-
0 0 I 0 Dg D] |0 0 —Qzi||DrPB*Y —L,L7, I

The formula for 1; is due to the fact that § — 8* = (BX)*8 — B* = (PX)*[(§ — 6%) + B*'B"¢],
Y, is essentially applying the delta method to the transformation from 7 to §, and 13 amounts to a
linearization of B', 0 — 0%, # — z*. The product ¥’ = 11,Ysisfor € = (BX)* (1 — DgQpd? —
D,Q;+D;P)B*Y given by,

¢ —(PsX)*(DeQa5 — D Qrrlr0lde) —(PX) (D Q7 — DeQp3Lonlinr)
—QpDgPB*Y —Qp% Qg6 LonLr
0 —(DeQ5 — Dz Q7rLr0L3s) ~(DzQzr — DeQgg LorLrr)
So T transforms ? into (4, 8, ) up to negligible terms and # ! is the variance of Y0 ~ (8, 6, §). O

J.2 Other lemmas referred to in the main text and app. B

The model implies that 7* is in the interior of [T. The following lemma establishes a bound for 7*
and related objects following our assumptions, especially G.
Lemma 9 (Bounds for 8%, 7*, and related objects). Recall that x} = 2, | 2c; log M, x = exp(—4x}),and
letk, = x3* = exp(—3x}), sox, > x. Then, (a) P(max,, |85 > x}) < 1; (b) max,, Kl Ty < 1
and max,, jX;/Sj, < 1; (C) ming, infﬂ;;f[ﬁfn(nm) / Nnl > x,log(x,/x); (d) For a constant C,
P{max,, SUPg syc Amax[Drm (6, 7Tm)] < Cx3} = 1; (e) Forany0 < p < oo and some constant C

only depending on p, max,, E{sup g Aax[D (6, 7)1} < C; (f) Forany 0 < p < co and some constant
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C only depending on p, max,, [Esup@Xﬂ,;n 1|7 — Toll < 1A Max[Dm (6, 7,)] < C

Proof.  First (a). By the triangle inequality, for and some fixed C < oo,

Bonferroni

Pmax |87, | > k) < P, i | > K5 = 5B"1) < P@m : gl > 5 =€) <

P& > x5 - ©) < oM exp|—(x} - CP/(2ep)] < 1.

m,j
For (b), for some fixed ¢ > 0,
= exp|u(6*, z,v, x;,)] exp(&;,,,) o exp(G) exp|u(6*, 2, v, Xjm) |
jm —

v 20 EXD[1(6%, 2, v, Xy ) | €XPp(8f) — max; exp(8im) J,,, 2, exp[u(6*, 2, v, Xypy)|
S exp(8jy, — max 8im)- (66)

Hence, for any C < oo,
- 7C
I]I(ml? 77.']m < CK,T) < [P’[c exp(rﬁlqul Sim — Iilqajx cSJ*;n) < CK,T] < [P’( 2max|5 | <log —)
_ % 1 x,C _ % 3 4 C\®
= P(nrqne’ljx|6jm| > —Elog T) = P(rflnfljx@m' > 5Ks — Elog ?) <1,
which establishes the first half of the assertion. The other half then follows from L12(d).
Now (c). Suppose without loss of generality that within a market products are such that 7;,,, =

min; 7;,,. Then,

ﬁl
f=mme m(7m) 1an sjmlog -— > 1nf (slmlog + (1 —s1,,) log &)
I]'I]’frf m Jm 1-—
By L12(d), the infimum is (for all m simultaneously) attained at 7}, = %, such that the infimum is
bounded below by s1,,, 10g(81,,./%) + (1 — S1,,,) log[(1 — $1,,,)/(1 — %) ]. The stated result then follows from
(b).
Next, (d). Note first that D, (6, ,,,) = Qp1(6, 7,,), where for 8,,, = diag(s,,,),

@m :f (Sm—/.im/jz,l) =f 8%2[I]—8;11/24m/.>;8r—nl/2]8%2 Z[ Sm/-’Om ijlnf Ajm/-SOml]’
z,V

z,v z,V Zz,V

where the penultimate inequality follows from the fact that | — 8;,1/25,,.6,,87./2

75

has eigenvalues
that are bounded below by 4¢,,.”> Analogous to the proof of (b), we have min; [, | 4$jméom =

C; exp(—3 max; |§;,,|) for some fixed C3 > 0. Consequently,

1
Anin[ Q@ (6, 701

For uniformity, it remains to be shown that maxg max,, maxpx exp[max; |8;,(6, 7,,)|] < C,/x. By the

Ao [ Drem (8, 71)] = < exp[3 max |8, (6, 7m)l] / Cs. (67)
j

definition of [T}, x < 7o, = S exp(Sjm +,ujm)]_1 < Cq exp(— max; j,,). Moreover, x < min; 7j,, =
min; f exp(jp, + Kjm) / [ €xp(Sym + Uem)] < Cgexp(min; §j,,). Combining these, we have for all
Sim:x | Cg < exp(8j) < Cq / %, and 80 exp(|5j,|) < max(Cy, Cg) / x, which establishes (d).

75We use the fact that the smallest eigenvalue of | — vv” corresponds to the eigenvector v and is equal to 1 — ||v]|2, which

— g-1/2 : —
for v = 85, %5, isequal to 1 — Zj>0/5jm = Som-
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Penultimately, (e). Apply (67) for 7,,, = 7,,,. Using the analogous argument as follows (67), for some

fixed C; and all 6 € @, m, j: expl[|3;,(6, my)|] < Cl/ﬂj";ﬂ. Now, for some fixed C, and any p > 0,

Glil[ii], H[ii]

triangle
E[(75,)P] < CPE[exp(pl&};, )] < CEE[exp(plx;,B81) exp(plEjm|)] < oo,
Finally, (f) follows from (e) and (b). O

In the remainder, we (as earlier) use the symbols €; ;,,, = 10g ;s €jm = 10gGm = E(€;jm | A), and
Abijm = €ijm — €jm, and use a tilde to indicate when ¢ is used as a function of § instead of 7, e.g. ?; im-

Lemma 10 (Uniform convergence of AL* and its derivatives). (a) Let 7.(0) =

\/max[p4(6), Fia(€)] log2 L. Then, sup, |AL*(6,7%)/7.(0)| < 1; (b) Let u be a vector of nonnegative
integers indicating derivative order with respect to each element of ¥,,, = (6, 7,,,), let |u| denote the
sum of the elements in %, and let «, denote the number of derivatives with respect to elements of 6%.
Let further, 7% = \/T,,x~3*(log I, )?*m&(®2.1) 4 exp(—N), where the exp(—N) term serves to ensure
that we are not dividing by zero. Then, for |u| > 0, max,, supg, [184ALs, (6, m)|/7Ti] < 1; and if
|u| = 0 then max,, sup@Xﬂm“Aﬁ;n(@, Tliri] < 1.

Proof. AL*is asum over I terms, so if I does not grow then the results are trivial. So, suppose that
I>1.

We first show (a). We use L14(a) conditional on the 7,,,’s. Since we do not need a result for each market
separately, we have no use for the g subscript in L14. Using the superscript ** to distinguish objects in
L14 from objects here, take ' = 6, n*** = I, and write {“(8) = AL*(8, 7%)/r.(6) as Zm ij &im(6)
for¢, = Zj()’ijm - g{“jm)[A&jm(Q, M) — A€, jm (6%, )1/ 7.(6), where each (§}*, z;'*) corresponds to
($ims Zim) forone (m € {1, ..., M},i € J,,) combination. We now verify the conditions of L14.

First, L14[i] is satisfied if we make 8" decrease at a sufficiently fast polynomial rate of I because ***
is differentiable and by L15(c). We now establish condition L14/ii| using L14(b), for which we need to
check L14[iiil,[iv],[v]. L14[iii] holds by G[iii]. For [iv] and [v], take 8"'* = log I, such that [iv] is satisfied.
Finally, [v]. Note that h* < g-;}(¢) log Iby L15(c). By L15(d), *? < (log I)~*. To verify [v], first note
that exp(—c/h**) and exp(—c/&"*?) decrease faster than any power of I. Now, due to the compactness of
0, we can choose T"" to increase at a (sufficiently fast) polynomial rate of I (that depends on our choice
of ') to make the requirements on T"', §** hold, showing L14[v]. This completes (a).

The proof of (b) follows the same steps as that of (a), except that we now do use the g subscript in
L14. First the case [u| > 0. Take g"* = m, zjg' = zjp, Pg* = (6, 7p), ng* = Ip,. Now fus(@, ) =
O“ALS, (0, 7,1 = ng ¢im(6, 7y, with &;,,(6, ) = Zj(yl-jm = Gijm)0" A8, (6, 7). First,
L14[i] is satisfied if we make &3 decrease at a sufficiently fast polynomial rate of I because ;' is
differentiable and by L15(c). We now establish condition L14[ii] using L14(b), for which we need to
check L14[iiil,[iv],[v]. L14[iii] holds by G[iii]. For [iv] and [v], take Bj;' = logI, such that [iv] is satisfied.
Finally, [v]. By L15(c), max,, h% < (logI)~2.

Further, noting that for implicit {a; ;,,}, \/[ng ¢m | Inl = L,\VG, = Im\/[zj @ijm]
Ind 3, Ea?

ijm>

IA

7 O%AL; i1 (6, ) \271150) B
mnilxo-;qZ SJmWallX{Im @SBE%,I; [E[gl?*jm( u;n% m ) ]} < (logD)~.

To verify [v], note that max,, exp(—c/h%4) and max,,, exp(—c/&4:?) decrease faster than any power of I.
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Now, due to the compactness of @, we can choose Ty;¢' to increase at a (sufficiently fast) polynomial rate
of I (that depends on our choice of §},¢) to make the requirements on Ty;¢', §,,5 hold, showing L14[v|.

Finally, if |«| = 0 then we do not have to take derivatives of 6 and by L13 we have an upper bound on
¢;jm that applies to all of [1,,,. The remainder of the proof is identical. This completes (b).

O

J.3 Lemmas referred to in app. J.2
Lemma 11 (Q approximations). Statements (17a)to (17c),
max | Fo{ Qag[0(8), 7(D)] — Qg6 }Te] < 1,
tef0,1]
max Hre{fzeﬂ[e(f), ()] — Qgﬂ}rﬂH <1,
te[0,1]

mae {05 [0, 2] — 037} < 1,

hold.
Proof. Let(8,7) = (6(f), n()), which by the MVT lies between (&, 7#) and (8*, 7*). We will first show
that I'y[ £ ge(87, 77) — L0l < 1, which is more challenging than the PLM component. We will assume
I — oo, since if it is fixed the result is trivial. For a convenient scaling, let R be block diagonal with
blocks I and [/ then all elements of RI'4R converge at rate 1/I (if micro identification dominates) or
faster (if identification comes from PLM).

Let K(6, 7r), K(6, 7) be the (r, ¢) element of I'3Lgg(6, )T, and I'gLge(8, )I's, respectively (to avoid
three-dimensional arrays of derivatives). Then, by adding and subtracting,

R(B,#) —K* = [AK(8, %) — AK* | + AR* + [KG, 7)) —K* | = D+ @ + B

First,

1= 1(6 - 8")"Ke(6,7) + (7 — 7*) K (6, 7))
<[00I Ko(6, ) || + max |2 — Tl 3 | Ko (6, 7n) I < 1.

Thm.1 L15(f) T m L15(f)

Further, since E(2)? is the variance of a sample mean,
1
E@* =Y E@% < 5 >, Im < L.
m m
Finally, by MVT, triangle, and Schwarz inequalities,

|1 < 18— 6*]) | ARe(6, ) || + max |7,y — 7l 3, | AR (6, 2tm) || < 1.

Thm.1 L10(b) T m L10(b)

Now the PLM component, I'5[$g5(6?, %) — @41 Note that @ is quadratic in 6(6, 7) and Dg,, =
—D, 0970y, and Dy, are bounded near the truth by LI(f), so I'g[ (67, #7) — B, 16 < 1.

Summing the two components completes the proof. The remaining results follow analogously by
redefining K for the likelihood term and using the same argument for the PLM term. O

The next lemma contains some simple results, several of which are well-known, albeit typically
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presented less conveniently (for us).

Lemma 12 (Trivial technical results). Recall that I, = max(l,e). (a) If {a;} are subgaussian with
common OVP ¢, < oo then max; |a;| < /¢, logI,; (b)forafixed C < oo, VO € OF: |67|? < C|6—6%3;
(c)forafixed C < oo, VO € 0% 22 < C||6 — 6*|3; (d) maxy, j(\/NolSjm — 75?‘,‘%|/\/7rj_*m) < logM.

Proof.  First, (a). Suppose without loss of generality that Vi: Eq; = 0. Take K > 1 to obtain

Bonferroni

[P’(max la;| > Ky/2¢c, log I) < Z P(|a;] > K\ 2¢, 10gI+) < 21exp( —K?logl,).

LetI — oo followed by K — .

Now (b). Since 6 € @%, |6 — 6%||? > €2. If |67 — 0*%||*> > €%/2 then ||67|*> < 622 < (2072 | €2)||6% —
0*Z||? < C]|6 — 6*||3, where C; = 2622 / €2. Now suppose that |67 — 6*Z||?> < €2/2. Then by the triangle
inequality, ||6¥ — 6*¥||?> > €2/2. Take C, = 2 + 4/¢. Then, ||6?|* < 2(]|6% — 0*%|?> + 2%) < 2[||6% —
O*2|2 + A2|16¥ — 6*7|12/(€*/2)] < C,||6 — 6*||3. Take C = max(Cy, C,).

For (c), note that for A > O and any 6 € %, |6 — 6% = (67 — 6*Z|]> + 22||6” — 6*”||> > |6 —
0*||> min(A2,1) > € min(A?, 1). Take C = €2.

Finally, (d). We have,

Bonferroni

B(max(/Nonlsjm = il V) > 0gM | A) < 3 BV Nl = 73] > V75, log M | A)

m,j

3Ny 77, log* M ) <2y eXp(_ min(log® M, \6/Nm7rj";n log M)ng,cl.

Bernstein

< ZZ exp(

mj 6N (1 — 700) + 2 N7t log M ]

Lemma 13 (Uniform upper bounds on contributions to the micro likelihood). |4¢;;,,,(6, 7,,)| < C||67|-
(Izimll + C).
Proof. Recall that €;;,,(6, ) = 10g6;jm(0, 7p) and €j,,(0, 7)) = 10gGm(6, 7). Let 1, (v) =

> . Gl’c’xj?’m(k)vk + 8jm Where x 'n represents the elements of Xx;,,, associated with 6” (i.e., the elements of

Xj, With random coefﬁments). Because of G[i], H[i], and the Schwarz inequality, | Zk 0% Xjm(i)Zim()) <
CillZzim |l - I16%]l- So, for all 8, 7y,:

exp| 2. 6FXjm(i Zim(i) + exp|C1lzimll - 16%1] exp[5m ]
gijm(e’ ) = Z

Z eXP[Zk 6kxtm(k)zlm(k) + rtm eXp[_Clllzim” : ”eZ”] exp[rtm]
exp(tjm)
< ezl 16D [ o
" Y, exp(tim)’
=f(6%,2)
eXp[Z 6kx]m(k)z‘i' m] p( )
— (@) = [ [ 2 ([ eI D) 5ot
zJy Z €Xp Zk ekxtm(k)z + ”i‘m] z Z p(rtm)
where the final line applies the inequality oppositely on numerator and denominator respectively.
Then for C, = 2Cysup,, /[, |z[f(6%,2) / [,§(6%2),° we have €;jn(6,7) — €m0, 7)) <
log exp|[|67[(2Cy | Zimll + C2)]| = I16%(2C4 [|Zim |l + C,). This establishes an upper bound. A lower bound

can be obtained analogously. O

L14 below shows a general uniform convergence result for growing vectors of functions. We need L14 in

7®This definition of C, is motivated the MVT expansion around 67 = 0, |log /, f(6%,z)| < |log1| + 2Cy IzIf(6%,z) /
S, 1(67,2).
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our proof, because as M grows, we need M different random functions of (6, 7,,,) to converge uniformly in
both the arguments and in m. For example, in L10(b) we need max,,,—;,. . SUP e sy 1AL3, (8, 7r,) /T4
to converge.

Although there are many uniform convergence results in the literature, we have failed to find one
that covers our case. Specifically, the fact that we have an increasing number M of functions and an
increasing number of parameter vectors. Nevertheless, L14 uses a familiar method of proof.

Lemma 14 (Uniform convergence over growing vectors of functions). For each of a possibly growing
number of G groups indexed by g = 1, ..., G, we define a parameter space ¥y, a true parameter vector
g, and a sequence of independent random vectors {v;}, with i € {1, ..., ng}. We partition each space
¥ into T, sets Wy, ...y L and let §,,, = max;—y, 1, SUP oWy [$g — Pgl denote the greatest
distance possible between two points in the same ¥g,. Let §g; be an arbitrary point in each ¥y;. Define
functions fng: ¥y — R%s, where fng(ng) = ffg[;bg,{vig}].

() IF 1] maxy SUPy, s ey, ygicong e (he) = Fng)I < 1 and [if] maxg [fag(@go)ll < 1; then
maxg supq,g ||ffng(1,bg)|| <1

(b) Suppose that we can write {an(l,bg) = Z:lzgl $o(1hg, Uig). Let z;4 be a subvector of v;, for which
Vg, i, g E[{G (g, Uig) | Zig] = 0. Define c'ré = SUpy, 22 IV (g, vig)ll Let for some B, hy := h(Bg) =
esssup supq,g[”{g(t,bg, Ui1(l|zigll < Bg)]- Then [ii] is satisfied if [iii] z;g is subgaussian with OVP c7;
[iv] Zg ng exp|—B3/(2c3)] < 1; [v] for any fixed £ > 0, Zg T,,q exp[—3€%/(653 + 2hge)] < 1.

Proof. Consider (a). We have by the triangle inequality,

. A . P A il
max sup [¥ng(Pe)ll = maxsup [[fg(g)|| < max sup [lfng(g) = bng(Pgo)ll + max |[fng(g )l < 1.

f o Wyt PgEWg

>

Now (b). For € > 0, write

Plmax g (Fgo)l > ¢ = P(max| 2.4 Wao vl > ¢)

< P(max|[ Y e ge, e 1lzig < )| > €) + Plmax |z > By)
a2 ,
< 2 P(I Y G vi1(lzigh < Bl > €) + 3 expl—p2/(2c)]
gt i g,
Bernstein,|iv. 2
<2 exp(—
8.t

m) +o1)=o(1)+0(1)<1. O
The following lemma provides bounds on derivatives of (contributions to) the micro log likelihood,
£*, and its expectation when 7 is in the interior of its parameter space, i.e., 7 € [T%. It is used, for
example, in step 4 of theorem 1 and in the proof of theorem 2, after consistency of 7 has been shown
which implies # € [1* with probability approaching one. For notational convenience, recall €;j,, =
10gGijms €jm = 10gGm, and A&y, = €jjm — €jm. Now, since g, (6, 1) = 7, we have £*(0,7) =
- Eijm DijmYijmlA€ijm(6, ) — A8, (6%, ) 1.
Lemma 15. Let u be a vector of nonnegative integers indicating the number of partial deriva-
tives with respect to elements of ¢,, = (6,7,,), let u, denote the total number of partial deriva-
tives with respect to elements of 6%, and |u| the total number of partial derivatives. Recall
that A¢;;, = Cijm — Cjm- (@) If u, = 0 then V0,7, € O X [1}:0%A¢;,,(0,0%,7,,) =
0; (b) If u, = 1 then V0,7, € O X [;:E[0%A¢;;,(0,6",7,) | A] = 0; (c) For
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a constant C < oo IP[maxm maXgyqx, |aueijm(e, Tl > C|Dgm(6, ﬂm)|||u|||zim||max(“z’1) |
A] = 0 and P[max,, maxgxmg, [0%€;jm(6,my)| > Cx 3|z, |mx@=2 | Al = o
(d) supy 22, 2y \/{Zj(yijm — imlAlijmO, 1) — A1} /6 — 6% = 1; (e) For
some fixed C > 0, max,, sup@gxﬂx(w%;q(e, 7,)|/imax(l,,,, DAMLD,....(6, Tw)]}) < C and
max,, sup@gxﬂk(|6“£;n(6, 7))/ max(I,,,,1) < x73; () Lett,, = 1(|7,, — 74| < x). Ifu, < 1,
then for some fixed C, max,,, E|0%L?,(0, 71,,,)7,,|/ max(I,,,, 1) < C(||6?| + 1)?>%=.
Proof. (a)and (b) are trivial since V6", 7r,,: 4€;,,,(0, 6", 7r,,) = 0 and V0", 7,,,: E[A€gz; (0, 67, 7., |
A,,] = 0, and hence so are all their derivatives with respect to 8%, 7,,,.

Now (c). Write €;,,(6, ) = €;jml6,8m(6, 7,,)]. The partial derivatives of £;;,,, with respect to
6%, 6, Okm are given by

5 . f/Jijm/Jikm ~
Csijm = 1(J = k) — —————— = |€s,ijm| < 1;
ijm
= f/éijm/iikm ~ Glilii]
Cozijm = Zim(k)(xjm(k) - thm(k)—o.__ ) = |Cozijm| < Clziml; (68)
t iym

Gli]

~ 1 ~
t
Now, by the chain rule, g?rijm = D;mé5ijm and €9ijm = é@ijm + ngé5ijm = é@ijm - aQO'rvnDZmégijm.ﬂ
Each partial derivative of ¢;,,, with respect to any element of 6 or 7, adds a factor of (a norm of) D,.

For |u| > 0, result (c) then follows from the bounds in (68). If |«| = 0 then (c¢) follows from L13.
For, (d), define a;,,(6) = A€;jm (6, p,) — A€}, and let C be a constant,

V(X 0tm = Siim)aim(®) < T 3 Elsijmadm(©)]
j J
=T Y Efsiiml (67 = 6%) ageijm(6) + (67 = 0°) aguyjm(©)]')
J
=T Y ElGml (67 = 09) ageijm(6) + (67 = 07)7 agugeijm(87. 667’}
J
< (167 — 6212 + 167 = 012 - IE%I1) max max E[Dm(®, mi)IP < C210 - 6°[F,

where the last inequality follows from 1L9(d), and ||6°Z | < |67 — 6*%|| + A by the triangle inequality.
The first half of (e) follows trivially from (c) and the second half from L9(d).
Finally (f). First, suppose #, = 1. Forsome 0 < t <1,

3L 3n(8, TVt = Ty 0 E(5ijm(6%, T )3 A (6, T )i | A)
J
By [E([gjm(O, 67, 7h) + 0777 g (1672, 67, i) |
Jj
(044610, 67, Ty + 677 0920 A8y (167, ¥, ) |y | A). (69)

Multiplying out the right-hand side of (69) yields four terms, one of which is zero by (b). The other three
are by L9(f) bounded in absolute value by a constant times I,,, times one of |67, 4, 4||67|.

Second, if v, = 0, take the mean value expansion around 67 to the second order, which yields

77By the implicit function theorem on §[6, 5(8, §)] = & which yields Dg + D, 8gvc = 0.
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nine terms all of which are bounded by a constant times I,,, times one of ||67||?, 22, and higher powers
thereof. O

K Additional Monte Carlo Results

In this appendix, we display results from the Monte Carlo experiments in table format. Each table is
a different statistic and each row is a different experiment. The major columns denote parameters, (67,
6%, 6y, 65, and 8;) and the sub-columns denote the three methods, CLEER, GMM-M, and MDLE.

The first set of five tables (for the five statistics) displays results for all of the experiments, except the
integration bias experiments. The sixth table displays the results for the integration bias experiments,
where we combine all of the statistics into a single table.

The five statistics we display are

. median absolute error;
. bias;

1
2
3. acceptance probability as a percentage;
4. median standard error;

5

. the percentage of runs where the estimate was at the zero boundary.

The results generally confirm the plots and surrounding discussion in Section 7 in the main text.
We observe that for small true values of 8, some runs of the estimator converge to the zero boundary,
for example see experiments [6], [9], and [11]. This happens most frequently for GMM-M for all
three specifications (recall that we even start GMM-M from the truth), and the problem get smaller for
CLEER and MDLE as 6% grows, but the problem persists for GMM-M regardles of 6%. We exclude these

cases from the calculations in acceptance probability and standard error tables.
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CLEER GMM-M MDLE

CLEER GMM-M MDLE

CLEER GMM-M MDLE

CLEER GMM-M MDLE

CLEER GMM-M MDLE

[1] baseline* 0.017 0.034 0.022 0.014 0.020 0.022 0.032 0.068 0.041 0.026 0.034 0.043 0.038 0.051 0.040
Vary S,

[2] S, = 250 0.026 0.036 0.046 0.020 0.025 0.045 0.051 0.069 0.087 0.033 0.038 0.083 0.041 0.047 0.063
[3] Sy, = 4,000 0.011 0.031 0.011 0.010 0.016 0.011 0.020 0.067 0.021 0.019 0.032 0.021 0.034 0.052 0.034
Vary M

[4]M =10 0.020 0.067 0.021 0.019 0.040 0.022 0.039 0.149 0.041 0.037 0.080 0.043 0.072 0.110 0.073
[5] M = 1,000 0.009 0.012 0.021 0.007 0.011 0.021 0.015 0.018 0.042 0.009 0.012 0.042 0.012 0.012 0.026
Vary (67, 6")

[6](0.3,0.3) 0.009 0.013 0.009 0.007 0.010 0.010 0.070 0.138 0.079 0.051 0.078 0.091 0.034 0.041 0.036
[7](0.3,1.0) 0.011 0.013 0.020 0.008 0.010 0.019 0.061 0.068 0.129 0.033 0.033 0.124 0.045 0.050 0.072
[8](0.3,2.0) 0.014 0.015 0.070 0.010 0.012 0.068 0.102 0.086 0.594 0.049 0.043 0.578 0.060 0.056 0.296
[9](1.0,0.3) 0.012 0.030 0.013 0.011 0.020 0.013 0.032 0.127 0.034 0.034 0.075 0.041 0.031 0.045 0.031
[10](1.0,2.0) 0.030 0.036 0.071 0.019 0.021 0.072 0.081 0.090 0.186 0.048 0.045 0.181 0.055 0.061 0.098
[11](2.0,0.3) 0.018 0.054 0.019 0.016 0.036 0.018 0.030 0.183 0.030 0.026 0.110 0.029 0.033 0.046 0.033
[12](2.0,1.0) 0.025 0.069 0.028 0.022 0.036 0.026 0.026 0.081 0.029 0.023 0.045 0.027 0.036 0.055 0.038
[13](2.0,2.0) 0.043 0.067 0.064 0.033 0.038 0.063 0.056 0.087 0.085 0.043 0.051 0.080 0.040 0.056 0.049
Vary 1st Stage

[14]a =0.15 0.021 0.217 0.024 0.014 0.044 0.022 0.042 0.482 0.045 0.027 0.042 0.043 0.131 0.296 0.137
[15] a = 1.00 0.013 0.017 0.021 0.014 0.018 0.021 0.027 0.034 0.043 0.026 0.037 0.042 0.024 0.025 0.028

This table displays the Median Absolute Error for our Monte Carlo analysis across different experiments for the four main parameters of interest.
" Baselineis M = 50, S,,, = 1,000, 6? = 1.0,and a = 0.5.

Table 4: Monte Carlo Results: Median Absolute Error
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CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE
[1] baseline* -0.001 +0.004  -0.003 -0.001 +0.003  -0.004 -0.002 +0.003  -0.005 -0.002 +0.004  -0.011 +0.001  +0.001  +0.001
Vary S,
[2] S, =250 -0.001 +0.002  -0.002 -0.002 +0.001  -0.005 -0.007 -0.004 -0.011 -0.002 -0.001 -0.007 -0.002 -0.003 -0.002
[3]S,, =4,000 -0.004 +0.001  -0.005 -0.003 +0.002  -0.004 -0.008 -0.000 -0.009 -0.005 +0.002  -0.007 -0.002 -0.001 -0.001
Vary M
[4]M =10 -0.004 +0.005  -0.006 -0.003 +0.006  -0.002 -0.008 -0.010 -0.009 -0.005 +0.006  -0.005 +0.009  4+0.004  +0.013
[6]M =1,000 +0.000 +0.001  -0.006 +0.001  +0.001  -0.007 +0.001  +0.001  -0.008 +0.001  +0.001  -0.017 +0.001  +0.001  -0.005
Vary (6%, 6")
[6](0.3,0.3) -0.001 +0.002  -0.002 -0.000 -0.000  +0.001 -0.036 -0.031 -0.017 -0.010 -0.034 -0.000 -0.005 -0.001 -0.002
[7](0.3,1.0) -0.001 +0.000  -0.007 -0.000 +0.001  -0.007 -0.013 +0.001  -0.055 -0.005 +0.001  -0.056 -0.002 +0.002  -0.023
[8](0.3,2.0) -0.010 +0.000  -0.070 -0.002 +0.001  -0.068 -0.092 +0.002  -0.594 -0.037 +0.004  -0.577 -0.040 +0.003  -0.295
[9](1.0,0.3) -0.001 +0.007  -0.002 -0.001 +0.001  -0.001 -0.007 -0.026 -0.003 -0.007 -0.034 -0.005 -0.000 +0.004  +0.000
[10](1.0,2.0) -0.025 +0.001  -0.070 -0.015 +0.000  -0.071 -0.069 -0.000 -0.185 -0.038 -0.002 -0.180 -0.033 -0.004 -0.094
[11](2.0,0.3) -0.003 +0.016  -0.004 -0.002 +0.007  -0.001 -0.007 -0.034 -0.004 -0.004 -0.044 -0.001 +0.002  4+0.013  +0.002
[12](2.0,1.0) -0.004 +0.002  -0.006 -0.004 +0.003  -0.007 -0.004 -0.004 -0.006 -0.004 +0.001  -0.007 -0.001 -0.003 -0.001
[13](2.0,2.0) -0.029 +0.002  -0.059 -0.023 -0.001 -0.057 -0.039 +0.001  -0.076 -0.029 -0.001 -0.075 -0.015 -0.001 -0.033
Vary 1st Stage
[14]a=0.15 -0.003 +0.027  -0.005 -0.003 +0.005  -0.006 -0.008 -0.055 -0.010 -0.005 +0.005  -0.007 +0.026  4+0.042  +0.062
[15] a = 1.00 -0.002 +0.001  -0.006 -0.001 +0.001  -0.004 -0.005 +0.001  -0.012 -0.003 -0.000 -0.008 +0.002  +0.003  -0.001

This table displays the Bias for our Monte Carlo analysis across different experiments for the four main parameters of interest.
* Baselineis M = 50, S,,, = 1,000, 67 = 1.0,and a = 0.5.

Table 5: Monte Carlo Results: Bias
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CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE

[1] baseline* 96.7 94.2 95.0 94.7 94.8 95.0 96.0 95.3 95.7 95.0 95.0 94.7 95.8 94.0 95.2
Vary S,

[2] S, = 250 95.0 95.7 93.9 94.1 94.3 92.8 95.1 96.7 94.5 94.5 93.6 94.6 94.0 94.6 93.8
[3] Sy, =4,000 933 95.3 92.8 94.7 94.8 94.3 93.6 95.7 93.5 95.1 96.1 93.9 95.5 95.4 95.2
Vary M

[4]M =10 94.6 94.4 95.2 94.3 94.1 93.9 95.7 97.4 95.7 93.5 93.2 94.3 95.6 94.3 96.0
[5] M = 1,000 95.9 95.7 94.9 94.9 95.2 94.4 94.9 94.5 95.2 95.5 94.8 94.1 94.9 94.6 95.2
Vary (67, 6")

[6](0.3,0.3) 91.1 96.9 91.4 94.5 97.2 91.8 90.5 95.0 89.8 94.4 95.0 91.0 94.9 96.4 94.2
[7](0.3,1.0) 93.1 93.8 90.4 95.2 94.8 90.5 94.0 94.6 90.8 96.1 95.3 92.3 94.9 94.7 91.9
[8](0.3,2.0) 89.4 94.1 40.2 95.3 95.1 42.8 86.4 94.6 41.3 90.7 94.7 41.6 92.1 94.1 454
[9](1.0,0.3) 94.7 96.0 94.4 94.7 94.9 93.8 96.6 95.2 97.0 96.2 97.3 96.5 95.3 95.7 95.6
[10](1.0,2.0) 85.9 93.1 69.9 90.9 94.4 71.4 86.1 93.8 70.3 89.8 94.1 72.3 92.1 94.2 78.7
[11](2.0,0.3) 93.7 96.1 94.6 93.7 95.7 93.9 96.8 95.0 97.0 96.9 96.8 97.3 94.6 96.5 95.2
[12](2.0,1.0) 93.9 95.1 94.9 95.8 95.5 95.0 93.5 95.0 94.7 95.2 94.3 94.7 94.3 93.7 94.7
[13](2.0,2.0) 92.1 94.6 86.0 91.9 93.5 86.3 91.7 94.2 87.5 90.7 94.3 86.6 95.0 94.6 93.1
Vary 1st Stage

[14]a =0.15 94.1 88.4 93.2 95.5 95.1 92.8 94.3 99.8 94.4 94.3 96.3 92.7 92.1 96.2 91.8
[15] a = 1.00 95.7 95.3 94.4 94.6 93.7 93.4 94.5 95.0 93.8 95.0 94.4 93.7 96.3 95.7 95.8

This table displays the Acceptance Probability (%) for our Monte Carlo analysis across different experiments for the four main parameters of interest.
" Baselineis M = 50, S,,, = 1,000, 6? = 1.0,and a = 0.5.

Table 6: Monte Carlo Results: Acceptance Probability (%)
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CLEER GMM-M MDLE

CLEER GMM-M MDLE

CLEER GMM-M MDLE

CLEER GMM-M MDLE

CLEER GMM-M MDLE

[1] baseline* 0.026 0.048 0.032 0.021 0.028 0.031 0.051 0.101 0.061 0.040 0.052 0.062 0.056 0.076 0.060
Vary S,

[2] S, = 250 0.040 0.053 0.063 0.028 0.037 0.062 0.078 0.103 0.123 0.049 0.057 0.124 0.066 0.075 0.089
[3] Sy, =4,000 0.015 0.047 0.016 0.013 0.026 0.016 0.029 0.101 0.031 0.026 0.051 0.031 0.050 0.075 0.050
Vary M

[4]M =10 0.030 0.098 0.032 0.028 0.055 0.032 0.060 0.218 0.063 0.055 0.110 0.064 0.108 0.161 0.109
[5] M = 1,000 0.013 0.017 0.031 0.010 0.015 0.031 0.022 0.026 0.061 0.014 0.018 0.061 0.016 0.017 0.039
Vary (67, 6")

[6](0.3,0.3) 0.013 0.024 0.014 0.011 0.015 0.015 0.096 0.180 0.112 0.075 0.095 0.129 0.051 0.061 0.053
[7](0.3,1.0) 0.015 0.019 0.026 0.012 0.014 0.026 0.084 0.096 0.164 0.047 0.048 0.167 0.066 0.070 0.102
[8](0.3,2.0) 0.018 0.021 0.030 0.015 0.017 0.030 0.114 0.125 0.262 0.063 0.064 0.254 0.075 0.079 0.140
[9](1.0,0.3) 0.018 0.050 0.019 0.016 0.029 0.019 0.051 0.177 0.054 0.048 0.105 0.056 0.050 0.070 0.050
[10](1.0,2.0) 0.036 0.050 0.051 0.026 0.031 0.051 0.091 0.128 0.132 0.060 0.066 0.131 0.066 0.081 0.083
[11](2.0,0.3) 0.026 0.096 0.027 0.024 0.055 0.027 0.045 0.234 0.046 0.042 0.168 0.045 0.049 0.080 0.049
[12](2.0,1.0) 0.037 0.096 0.041 0.033 0.054 0.041 0.039 0.122 0.042 0.034 0.067 0.042 0.052 0.081 0.054
[13](2.0,2.0) 0.053 0.096 0.068 0.043 0.056 0.068 0.071 0.135 0.090 0.055 0.071 0.089 0.059 0.082 0.066
Vary 1st Stage

[14]a =0.15 0.030 0.311 0.032 0.021 0.073 0.031 0.059 0.787 0.061 0.040 0.062 0.062 0.183 0.486 0.186
[15] a = 1.00 0.020 0.027 0.031 0.020 0.027 0.031 0.040 0.052 0.062 0.039 0.052 0.062 0.037 0.039 0.042

This table displays the Median Standard Error for our Monte Carlo analysis across different experiments for the four main parameters of interest.
" Baselineis M = 50, S,,, = 1,000, 6? = 1.0,and a = 0.5.

Table 7: Monte Carlo Results: Median Standard Error
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CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE

[1] baseline* 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vary S,

[2] S, = 250 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[3] S, = 4,000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vary M

[4]M =10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[5] M = 1,000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vary (67, 6")

[6](0.3,0.3) 0.0 0.0 0.0 0.0 0.0 0.0 8.7 15.4 10.0 2.6 11.4 11.2 0.0 0.0 0.0
[7](0.3,1.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
[8](0.3,2.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.0
[9](1.0,0.3) 0.0 0.0 0.0 0.0 0.0 0.0 0.3 11.1 0.5 0.3 10.0 0.5 0.0 0.0 0.0
[10](1.0,2.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[11](2.0,0.3) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 18.4 0.1 0.0 12.2 0.0 0.0 0.0 0.0
[12](2.0,1.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[13](2.0,2.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Vary 1st Stage

[14]a =0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[15] a = 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

This table displays the Boundary Proportion (%) for our Monte Carlo analysis across different experiments for the four main parameters of interest.
" Baselineis M = 50, S,,, = 1,000, 6? = 1.0,and a = 0.5.

Table 8: Monte Carlo Results: Boundary Proportion (%)
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CLEER GMM-M CLEER(19) CLEER GMM-M CLEER(19) CLEER GMM-M CLEER (19) CLEER GMM-M CLEER(19) CLEER GMM-M CLEER (19)

Panel A: Median Absolute Error

0¢

[16]a=1.0,6v=2 0.019 0.019 0.017 0.020 0.020 0.018 0.047 0.044 0.042 0.045 0.047 0.040 0.029 0.027 0.027
[17]a=1.0,6v=2.5 0.030 0.020 0.018 0.030 0.022 0.019 0.094 0.053 0.051 0.093 0.053 0.050 0.032 0.028 0.028
[18]a =1.0,6v =3 0.061 0.021 0.021 0.061 0.022 0.023 0.215 0.057 0.067 0.211 0.059 0.067 0.058 0.028 0.028
[19]a=05,6v=2 0.032 0.035 0.027 0.021 0.022 0.018 0.081 0.087 0.071 0.049 0.047 0.042 0.049 0.054 0.047
[20]a =0.5,6v=2.5 0.066 0.034 0.029 0.038 0.022 0.020 0.206 0.104 0.089 0.114 0.053 0.054 0.091 0.058 0.051
[21]a=0.5,6v =3 0.133 0.036 0.039 0.078 0.024 0.026 0.465 0.117 0.136 0.257 0.062 0.074 0.177 0.059 0.056
Panel B: Bias

[16]a =1.0,6v =2 -0.012 +0.000 -0.006 -0.011 +0.001 -0.005 -0.031 -0.000 -0.013 -0.029 +0.002 -0.012 -0.007 +0.000 +0.002
[17]a=1.0,6v=2.5 -0.030 +0.000 -0.006 -0.029 +0.002 -0.007 -0.093 +0.001 -0.019 -0.091 +0.005 -0.020 -0.025 +0.001 -0.001
[18]a=1.0,6v =3 -0.061 +0.002 -0.014 -0.061 +0.002 -0.015 -0.216 +0.003 -0.049 -0.214 +0.004 -0.051 -0.056 +0.002 -0.008
[19]a=0.5,6v =2 -0.026 -0.001 -0.009 -0.015 +0.000 -0.005 -0.069 -0.004 -0.024 -0.037 +0.002 -0.012 -0.032 -0.004 -0.007
[20]a=05,6v=25 -0.067 -0.001 -0.017 -0.038 +0.003 -0.009 -0.207 -0.004 -0.054 -0.112 +0.004 -0.030 -0.090 -0.003 -0.018
[21]a=05,6v =3 -0.134 +0.001 -0.035 -0.079 +0.001 -0.021 -0.469 +0.002 -0.127 -0.259 +0.003 -0.063 -0.182 +0.000 -0.042
Panel C: Acceptance Probability (%)

[16]a=1.0,6v=2 90.6 93.5 93.2 93.1 93.7 94.7 90.9 94.3 94.3 94.0 95.5 95.2 93.2 93.7 93.8
[17]a =1.0,6v =25 78.6 95.2 94.2 79.3 93.7 93.8 74.2 93.5 93.6 73.2 94.0 93.8 90.9 93.6 94.5
[18]a=1.0,6v=3 38.1 93.3 92.1 37.7 92.9 90.0 20.5 94.3 90.2 20.8 93.7 90.7 70.0 94.7 94.6
[19]a=05,6v=2 87.8 93.6 93.8 91.3 94.6 94.7 87.4 93.5 93.1 91.9 94.6 95.1 92.1 93.1 94.0
[20]a =0.5,6v =2.5 56.7 94.5 92.5 70.9 94.7 93.0 51.1 94.5 92.6 62.6 94.0 94.1 74.7 93.8 93.5
[21]a=0.5,6v =3 5.3 94.8 85.3 19.5 92.3 87.5 3.6 94.4 84.4 11.0 93.9 88.0 222 94.6 91.8
Panel D: Median Standard Error

[16]a =1.0,6v =2 0.025 0.029 0.025 0.025 0.029 0.025 0.059 0.065 0.060 0.059 0.065 0.060 0.039 0.040 0.040
[17]a=1.0,6v=2.5 0.026 0.030 0.027 0.026 0.030 0.027 0.069 0.076 0.072 0.069 0.076 0.072 0.039 0.040 0.040
[18]a =1.0,6v =3 0.027 0.032 0.028 0.027 0.032 0.028 0.077 0.087 0.083 0.077 0.087 0.083 0.039 0.041 0.040
[19]a =0.5,6v =2 0.036 0.050 0.037 0.026 0.031 0.026 0.092 0.129 0.096 0.060 0.066 0.062 0.066 0.081 0.068
[20]a=05,6v=25 0.037 0.051 0.041 0.027 0.032 0.028 0.107 0.150 0.120 0.070 0.078 0.074 0.067 0.083 0.072
[21]a=05,6v =3 0.036 0.052 0.042 0.027 0.034 0.029 0.119 0.170 0.140 0.079 0.090 0.085 0.066 0.082 0.073

Notes: This table presents Monte Carlo results for integration bias experiments.

Table 9: Monte Carlo Results: Integration Bias



L Glossaries of Common Results and Notation
This appendix includes a listing of common results used throughout the paper and referenced by

name and a glossary of some of the notation used.

L.1 Common results referenced by name

annihilator matrix For given matrix A, M4 = [ — %, with %, a projection matrix

Bernstein inequality If {x;} are independent with variances o and common upper bound X then
P(| X, xil > C) < 2exp[-3C*/ (6 3}, o7 + 2CX)]

Bonferroni inequality P(A U B) < P(A) + P(B)

concentration parameter In a single regressor linear model y = xf + u, where x = Zz + v for
instruments Z, the number || Z” 7||?/02; generalizations thereof in more complicated models.

Cramér’s theorem If x,, 2 xand Y —d> ythen x,,y, i xy

esssup essential supremum (in this context the top of the support of the random variable)

Hoeffding inequality If {x;}are independent with upper and lower bounds u;, ¢; then P(|| Zi x| >
C) < 2exp(=2C% / 3 .(u; — €;)%)

Hoélder inequality E([x|| [lyl) < (E[x|P)YP(E|y|P/P-D)1-VP forany1 < p < oo for which the
expectations exist (special case of Jensen inequality)

information matrix equality For likelihood estimators, the expectation of the outer product of the
gradients equals minus that of the Hessian

Jensen inequality If g is convex then g(Ex) < Eg(x) provided that both expectations exist

Lindeberg condition For a triangular independent array {x;,}, with Zi Vx;, = 1, Ve >
0: 3 E[x3,1(1x3, 2 €)] < 1

Markov inequality P(||x|| > t) < t~"E||x||" for any t > 0 and r > 0 for which the moment exists

Moore Penrose inverse For an arbitrary matrix A, the unique matrix A* for which AA* = (44%)7,
ATA = (A*A)Y,AA*A = A,ATAA* = A*,i.e. VDU when the singular value decomposition
is used with D a matrix with only the nonzero singular values

mean value theorem f(t) = f(0) + f'(At)t for some 0 < 1 < 1 (or a higher order analog thereof)

norm of a matrix We use [|A| = max;, - [|Ax|, i.e. the square root of the largest eigenvalue of AYA.

partitioned inverse Assuming the existence of the inverses,

A BY
B C

(A-B'C'B)"' —(A—-B'CB)"'B"C™!
(C—BA'BY)! |

projection matrix For given matrix A, the matrix £, = A(AA)"!A" (or more generally AA*)

Schwarz inequality Holder inequality for p = 2

Slutsky x, Lx= g(x,) L g(x) if g is continuous

sigma algebra information set

slowly varying function a function for which lim,,_, ., f(tx) / f(x) = 1forallt > 0;logarithms are
an example

singular value decomposition Any real matrix A can be written as UDV", where U and V have
orthonormal columns (U U = land V"'V = [) and D is a diagonal matrix.

triangle inequality ||x + y| < ||x|| + ||yl

weak law of large numbers (WLLN) any of a number of results showing convergence of a sample
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mean to its expectation
Woodbury matrix identity (A + BC™'BY)™! = A1 — A7'B(C + B"A"!1B)"1BA™!

L.2 Notation (incomplete list)
A

Aplim,,_ _(B'B/M).15

A the sigma algebra generated by product characteristics and the D;,,’s. 9
B

Bmatrix of instruments. 7

bj, vector of instruments. 6

B! optimal instruments for market m. 20
B CLEER estimator of 8*. 6

B parameter space of §*. 11

B* (true value of)) product level regression coefficients. 5
C

c§ optimal variance proxy (OVP) for §,,, see G. 10

c; OVP for z;,,,, see G. 11

# product level moments part of the objective function defined in terms of 8, 5. 6
— converges (or diverges) to. 6

LA converges in probability to. 6
D

dp number of instruments. 6

dg dimension of 8*. 6

D;,,, dummy to indicate whether consumer i is included in the micro sample. 6
d, number of random coefficients. 5

dg dimension of 6. 8

d, number of observed product characteristics. 4

d, number of demographic characteristics. 5

0 partial derivative(s) with respect to its subscript(s). 5

8 CLEER estimator of §*. 6

5]*;,, (true) ‘mean’ utility. 5

AL £ — £ (analogously when endowed with a  superscript). 13

AC;jm 10gGijm — 10g Gm- 19

d,, Berry inversion (when used as a function). 8

AQ Q — Q (analogously when endowed with a & superscript). 13

AP D — .13

D, derivative of Berry (1994) inversion with respect to 7z, Dg = d,v9. 10
Dy derivative of Berry (1994) inversion with respect to 6, Dg = Jgvd. 10
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d differential used in integration. 5

dp, number of (product level) instruments. 11
;l;m
® mean absolute error based diversion statistic. 32

diversion ratio from good j to good j with respect to unobserved quality, defined at the truth. 31

E

[E expectation. 6

€ijm log gijn’r 19, 40

€ used as a distance in the consistency proof. 9
€;;, idiosyncratic product specific taste shocks. 5

7 convenience rate ) = x>. 13

F

E,, distribution of unobservable demographics. 5
G

G, distribution of observable demographics. 5

T = {ElLr = £roLdolonl} 15

Ig=[E(Lop — LonlrrLlne) + M EAEV]_UZ; basically a population analog to . 15
[y square root of the 86 block of the inverse Hessian of Q, [y = Qgé/ 214

> left hand side is element-wise of greater or equal order than the right-hand side. 10

> indicates that the right-hand side is element-wise negligible to the left-hand side. 10
H

H Hessian matrix of subscript function evaluated at the truth, e.g., Hg. 16

I

I'total number of consumers in the micro sample (across all markets). 8
i consumer index. 5

I,,, number of consumers in the micro sample in market m. 6

oo infinity. 6

J

J total number of products across all markets. 7
Jjproduct index. 4

J,, number of products in market m. 4
K

xrateusedin C, x = exp(—4xg). 10

Kg rate used in C, K; =2, /2c§ logM. 10
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K, we show that min,, ; 75, > k7. 35
L

[ mixed data likelihood defined in terms of 6, §. 6

£™ minus macro loglikelihood defined in terms of 7. 8

€ijm 108 0y . 19

Cim 108 Gm- 19

™ macro likelihood as a function of 6, 8. 7

L* micro likelihood as a function of 8, 8. 7

£* (minus) micro loglikelihood. 9

£ (minus) sample loglikelihood defined in terms of 6, 7. 8

£* minus the micro loglikelihood. 8

Aindex of micro identification strength, ||6*#||. 10

|6 — 6*||3 norm used in definition of p*, |6 — 6* |3 = [|6% — 6*Z||> + 2%||6” — 6*”|. 10
< indicates that the left-hand side is (element by element) of smaller order than (negligible compared
to) the right-hand side. 12

M

M number of markets. 4

m market index. 4

1 sample product level moment. 7

M c}% smallest eigenvalue of the concentration parameter for §*. 18

M¢?2 smallest eigenvalue of the concentration parameter for (6”*, 8*). 18
M ¢§ smallest eigenvalue of the concentration parameter for (6%, 3*). 18
,u}};ﬁm deviation due to taste shock. 5

/szr;m deviation from mean utility due to observed demographic variables. 5
N

N,,, population size. 5

Vi, Unobserved demographics. 5
o

Q population objective function. 9
Q sample objective function. 8

P

[® probability. 5

Py orthogonal projection matrix. 9

P projection matrix that arises after 5 has been profiled out. 9
& population product level moments objective function. 9

& product level moments objective function defined in terms of 8, 7z. 8
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# CLEER estimator of 77*. 9

[ a subset of [, Hm Iy, where M5, = {7,: min; 7, > x}. 12
M7 a subset of IM* replacing x with x,, = /4. 14

Tt vector of 7, ’s (excluding 7, ). 8

7y, true product level choice probabilities. 6

M parameter space of 7*. 11

2im endogenous product characteristics. 5

-* Moore Penrose inverse. 9

Q

Qpp the inverse of the 8, 8 block of the inverse Hessian of , Qgg = Qg — Qo Q710 0. 14
4o component of numerator term in quadratic expansion, 4g = Qg — Qg,Q75(Q% — L2 (s — %), see
L8. 15

R

pp rate governing AQ*(0, m) — Q*(6*,5)(6, ), pp(6, 7) = nmax{npe4(8), p"(m)}. 13

piq identification strength (as a function of 8) p®(0) = || PDg(6*, 7*)(6 — 6*)||?, see C. 9

o™ rate (function of 7) governing convergence of market shares to choice probabilities 7, p™(7) =
3, Om) = 3, Nollsm — . 13

p* micro identification strength, p*(6) = I||6 — 6*|3,see A. 9

pn rate governing total population increase, pyy = Zm N1 12

p?® product level moment identification strength, see B. 9

oy, rate governing smallest market population increase, p,, = 1 / min,,;, \/N,;,. 12
S

4;jm(v; 6, &) choice probability before integrating out random coefficients. 5

Sjm Observed market share. 6

4jm choice probability before integrating out random coefficients. 5

Si jm Micro choice probability function defined in terms of 6, 77,,,. 8

0jm unconditional choice probability function. 5

cg.z”" micro choice probability function in terms of 8, 8. 5

» when used as a superscript to a parameter it indicates the true value of that parameter; if used as a

superscript to a function it indicates that the function is evaluated at the true values. 5, 32
T

O parameter space. 8

O, e neighborhood of 6*. 9

& CLEER estimator of 8*. 6

O*” (true) matrix of utility coefficients on v X x. 5

0*¥ vector of free utility coefficients on unobservable demographics. 5

O*Z (true) matrix of utility coefficientson z X x. 5
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6*Z vector of free utility coefficients on observable demographics. 5

V transposition. 5
U

Ujjm utility. 5

A%

7t vector of 77j,,,’s across all markets. 8
1j variance of the asymptotic distribution of I'31(6 — 6*).. 14

V variance function. 11
A"

W weight matrix. 7

X

X;jm exogenous product characteristics. 5

X, observed matrix of product characteristics for market m. 5
Xy support of x;,,. 11

E difference of Zg and =,;. 15

&, at the truth, plimM_)oo(LQ,TL,‘T}TD;ZPB(BVB)‘I). 15

Ep at the truth, plim,, _ [D3PB(B"B)7!]. 15

&m unobserved product attribute. 4

&,» unobserved product characteristics. 5

X;jm Vvector of observed product characteristics. 4
Y

Yijm consumer choice dummy. 5

Yim vector of y;j,,’s for all inside goods. 6
Z

Z;» demographic characteristics. 5

Z support of consumer characteristics, z;;,. 10
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