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We propose a conformant likelihood estimator with exogeneity restrictions (CLEER) for
random coefficients discrete choice demandmodels that is applicable in a broad range of
data settings. It combines the likelihoods of twomixed logit estimators—one for consumer
level data, and one for product level data—with product level exogeneity restrictions. Our
estimator is both efficient and conformant: its rates of convergence will be the fastest
possible given the variation available in the data. The researcher does not need to pre-test or
adjust the estimator and the inference procedure is valid across a wide variety of scenarios.
Moreover, it can be tractably applied to large datasets. We illustrate the features of our
estimator by comparing it to alternatives in the literature.

1 Motivation
Demandmodels with endogenous prices using the discrete choice randomutility framework provide

a tractable framework to flexibly estimate substitution patterns between differentiated products (see
e.g., Berry et al., 1995, BLP95). This model has been estimated using a wide array of datasets featuring
consumer leveldata, product leveldata, oramixtureof both. Weproposea likelihood-basedestimator for
BLP-style models that applies to all the above data settings, which we term the Conformant Likelihood
Estimator with Exogeneity Restrictions (CLEER). Intuitively, it combines the likelihoods of twomixed
logit estimators, one for consumer level data (assuming it is available), and one for product level
data, along with product level exogeneity restrictions. It moreover recovers product quality terms
as parameters of themodel. We impose no additional assumptions over those posited on demand in
BLP95, which are also used in other estimators extendedwith consumer level data (e.g., Petrin 2002;
Berry et al. 2004a (BLP04); Goolsbee and Petrin 2004; Chintagunta andDube 2005). We showCLEER
converges at the fastest possible rate, which depends onunderlying data and identification strength, and
always produces asymptotically valid inference using standard techniques, regardless of the data and
identification strength. We term this property conformance, which is a novel property in this literature.
We further establish that CLEER is fully efficient under the assumptions stated within.
To fix ideas, consider first the case inwhicha large sample of consumerpurchasedata is available. The

basic structure of the demandmodel proposed in BLP ismixed (or random coefficients) multinomial
logit (Hausman and Wise, 1978). The standard multinomial logit MLE has nice computational
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properties (McFadden, 1974). For example, it is globally concave in the parameters, and the gradient
and Hessian have simple expressions. Therefore, with consumer level data in hand, it is natural to
consider estimating a random coefficients demandmodel viaMLE using the individual likelihood of
purchase. However, in order to accommodate price endogeneity, the basic structure of BLP requires
the estimation of product (by market) quality parameters.1 It can be demanding of consumer level
data alone to estimate such a specification due to the presence of potentiallymany (hundreds, or even
hundreds of thousands, depending on the application) product quality parameters.
To address this issue, CLEER incorporates product level data onmarket shares.2 Product data can

be augmented with a consumer level sample which is a—perhaps small, perhaps large—subset of the
market population. From this perspective, the loglikelihood of both individual consumer data (‘micro’
data) andmarket shares (‘macro’ data) consists of two terms: amicro term following themixed logit and
amacro term that integrates over the distribution of consumer characteristics in the population. With
themacro term, it is possible to identify product quality parameters. However, these two terms do not
exploit product level exogeneity restrictionswhichmay have power to identify preference heterogeneity.
Moreover, typically researchers are interested in (potentially endogenous) explanatory factorsof product
quality, which are not identified by these terms alone.
The third term in the CLEER objective function directly incorporates information contained in the

product level exogeneity restrictions of BLP95. These exogeneity restrictions are additional assumptions
on the data-generating process. Indeed, as BLP95 show, with sufficient exogeneity restrictions it is
possible to identify allmodel parameters even if there isno consumer sample. The primary contribution
of this paper is to provide an estimator that fully exploits these two sources of identifying variation to
achieve the fastest possible rate of convergence, efficiency, and valid inference without relying on any
pre-test of the data or tuning parameters.
CLEER is compatible with the bulk of datasets in the applied literature.3 In particular, it is well-

behaved with consumer samples of any size. The objective function comprises three terms that
can diverge at different rates: the micro loglikelihood with the consumer sample size, the macro
loglikelihood with the market size, and a GMM objective function based on the product exogeneity
restrictions with the number of products. These differing rates in the objective function are whatmake
our estimator conformant: the estimator’s rates of convergence adjust according to the relative sample
sizes and strength of information from the objective functions’ composite terms.4

As we illustrate in app. C, observed variation in demographics identifies both observed and un-
observed taste heterogeneity as long as that variation shifts consumers’ utility across products.5 As
emphasized by Gandhi andHoude (2020, GH20), overidentifying product level exclusion restrictions
can also identify taste heterogeneity. If the number of sampled consumers grows faster than the number
of markets, then exploiting the identifying information (if present) in themicro sample will produce
a faster convergence rate than relying on product level exclusion restrictions. Adding the product

1BLP95 and Nevo (2000) have noted that product quality parameters could be used to separate the estimation of ‘nonlinear’
parameters that govern substitution patterns from the ‘linear’ parameters of the model such as the mean price effects.
2CLEER also covers intermediate cases when different data (micro versus macro) is available in different markets.
3For expositional purposes, we assume that the researcher has direct access to consumer level first choice data and/or
product level market share data. Although CLEER could accommodate both ranked choice data (e.g., Berry et al., 2004a;
Grieco et al., 2023a) and aggregated statistics of micro data (Sweeting, 2013), we do not explore those extensions here.
4The use of the plural ‘rates’ is because different elements of our estimator vector converge at different rates.
5Berry and Haile (2024) make a similar point in a nonparametric context.
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level exclusions to the estimator is useful when the consumer sample is small (or not present) or its
identfying demographic variation isweak (or nonexistent). Note thatwhen this variation is nonexistent,
the information used by the likelihood alone is insufficient for identification. Conversely, when product
level instruments are few or weak, product level restrictions are insufficient for identification. In either
case, CLEER converges at the optimal rate and is efficient because it exploits all available sources of
identifying information. However, weak identification of either component may result in a slower
(though still optimal) rate of convergence.
We formally establish consistency and asymptotic normality of CLEER in section 4. The proofs are

nonstandard to accommodate CLEER’s conformance features. We show that conducting inference
using formulas familiar from the standard extremum estimation framework is asymptotically valid.
Validity obtains regardless of the relative divergence rates and even though the vector of product quality
parameters increases in dimension. More generally, the inference procedure is robust to the source
of identification, i.e. the inference procedure is valid both when the micro data provide sufficient
information to recover the taste heterogeneity parameters and when such informationmust come from
the product level exclusion restrictions: one does not have to specify or know. Finally, we describe the
conditions under which CLEER obtains the semiparametric efficiency bound in section 5.2.
Section 6 provides a comparison of CLEER to other approaches. We note several features of CLEER

which facilitate the optimality, conformance, and robustness to weak identification. These include:
(1) utilizing themacro likelihood to avoid enforcing share constraints to achieve efficiency and simplify
inference; (2) fully utilizing the score of the likelihood with respect to observed and unobserved
consumer heterogeneity parameters; and (3) allowing overidentification of product level exclusion
restrictions to provide an additional source of identification. While previous estimators have utilized
subsets of these elements, ours is the first to deploy all to achieve full efficiency and conformance.
Our approach has broad applicability and is appropriate formany demand estimation applications

when (either or) both product level data on shares and consumer level data on purchases is available.6

Although BLP04 and Petrin (2002) are canonical examples of applications, there aremanymore. An
incomplete list of examples includes Goeree (2008), Ciliberto and Kuminoff (2010), Crawford and
Yurukoglu (2012), Starc (2014),Wollmann (2018), Crawford et al. (2018), Hackmann (2019), Neilson
(2019), Backus et al. (2021), Grieco et al. (2023a), Montag (2023), and Jiménez-Hernández and Seira
(2021). A common example in economics and marketing is combining grocery store scanner data
with household level data, for example the datasetsmaintained by IRI or Nielsen. Examples include
Chintagunta andDube (2005) (IRI) and Tuchman (2019) and Backus et al. (2021) (Nielsen).
Berry andHaile (2014) showed identification of objects in a nonparametric class of discrete choice

demand models using product level data and sufficient instruments; Berry and Haile (2024) shows
how observing consumer level data reduces the number of instruments in these models. CLEER is
applied to themost commonparametric version of thesemodels used in appliedwork. It ismost directly
comparable to GMM approaches based onmicro-moments (e.g. Petrin 2002 and BLP04). In related
work, Conlon andGortmaker (2023, CG23) provide a comprehensive discussion of best practices for
incorporatingmoments based on a variety of types of auxiliary consumer level data into this canonical
GMM-based estimation of BLP-style models. Other researchers have proposed using the likelihood of

6In app. G, we provide two algorithms to efficiently compute CLEER. These are both implemented in this paper’s companion
Julia package, Grumps.
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consumer data in estimating BLP-style models (e.g., Goolsbee and Petrin, 2004; Chintagunta and Dube,
2005; Train andWinston, 2007; Bachmann et al., 2019).7Allen et al. (2019) combine the likelihood of an
equilibrium searchmodel with a penalty term of moment equalities.
Our problem and approach share features with several strands of the econometrics literature. For

instance, Imbens and Lancaster (1994) consider the problem of combining different sources of data
albeit that there themicro data are assumed to provide identification and the different data sources are
either independent with sample sizes growing at the same rate or themacro data can be considered
to be of infinite size. Ridder andMoffitt (2007) provide a survey of methods to combine different data
sets and van den Berg and van der Klaauw (2001) combine data sets to estimate a durationmodel. It
is common in the panel data literature to have the dataset grow in different dimensions at different
rates (e.g. Hahn andNewey, 2004). Our paper does not assume a panel structure for either products
or consumers. Moreover, we know of no examples in which there are as many growth dimensions
to consider as here. Having different elements of the estimator vector converge at different rates is a
common feature of the semiparametric estimation literature (e.g. Robinson, 1988). Abadie et al. (2020)
consider the case of sample size approaching population size; their problem is different from that
studied here. Finally, several papers cover asymptotics in random coefficient discrete choicemodels
with only product-level data: The first such paper is Berry et al. (2004b, BLiP04). Freyberger (2015) and
Hong et al. (2021) are closer in spirit to ours in that the number of markets increases, whereas in BLiP04
the number of products increases but the number of markets is fixed. Moon et al. (2018) consider a BLP
typemodel placing panel data assumptions on the product quality terms, whereas we do not impose a
panel structure. Myojo and Kanazawa (2012) show how additional moments can be constructed on the
basis of consumer level data and discuss supply side restrictions.
The following section reviews the random coefficients demandmodel. Section 3 introduces CLEER.

We state our formal consistency and asymptotic normality results in section 4. Conformance and
efficiency properties are described in section 5. Section 6 illustrates the trade-offs in going fromCLEER
to GMM estimators that are commonly used in applied work. Section 7 compares the finite sample
performance of CLEER relative to alternative estimators in aMonte Carlo study. Section 8 concludes.

2 Random Coefficients DemandModel
This section reviews the random coefficients discrete choice demandmodel and describes the data

used by our estimator. Themodel matches that of BLP95 with slightly adjusted notation for clarity. We
assume the researcher has access to both product level shares and a sample of consumer level choices,
althoughwewill allow this sample to be empty. Our estimator assumes that consumer level choices are
drawn from a subset of consumers onwhich themarket level shares are based. In contrast, the previous
literature has treatedmicro andmacro data as different samples (e.g., Imbens and Lancaster, 1994).
2.1 Model
The econometrician observes𝑀markets. In eachmarket𝑚, 𝐽𝑚 products are available for purchase.

A product 𝑗 inmarket𝑚 is described by the tuple (𝑥𝑗𝑚, 𝜉𝑗𝑚), where 𝑥𝑗𝑚 is a 𝑑𝑥-dimensional vector of
observed characteristics of the product and 𝜉𝑗𝑚 is a scalar unobserved product attribute. We often refer
to 𝜉𝑗𝑚 as unobserved product quality, but it is important to keep inmind that it reflects the (common
component of) unobserved preference for product 𝑗 inmarket𝑚whichmay vary acrossmarkets. To
7MLE is a popular choice for estimating discrete choice models that do not have endogenous product characteristics; see
e.g. hospital choice as in Ho (2006) and urban/location models such as Bayer et al. (2007).

4



allow for endogeneity in product characteristics, we specify 𝑥𝑗𝑚 = ( ̃𝑥𝑗𝑚, 𝓅𝑗𝑚). The only distinction
between ̃𝑥𝑗𝑚 and 𝓅𝑗𝑚 (typically price) is that ̃𝑥𝑗𝑚 is uncorrelated with 𝜉𝑗𝑚.
There are𝑁𝑚 consumers inmarket𝑚 drawn from amarket-specific distribution described below.

Consumer 𝑖 is characterized by (𝑧𝑖𝑚, 𝜈𝑖𝑚, 𝜀𝑖𝑚) where 𝑧𝑖𝑚 is a 𝑑𝑧-vector of potentially observable
consumer characteristics (such as income), and 𝜈𝑖𝑚 is a 𝑑𝜈 ≤ 𝑑𝑥-vector of unobservable consumer
taste shocks to preferences for product characteristics. Finally 𝜀𝑖𝑚 is a 𝐽𝑚 + 1-vector of idiosyncratic
product specific taste shocks for each product and an outside good (e.g., no purchase) that is distributed
according to the standard Type-I extreme value (Gumbel) distribution. In the population, 𝑧𝑖𝑚 and 𝜈𝑖𝑚
aremutually independent and distributed according to known distributions𝐺𝑚 and 𝐹𝑚, respectively.
In practice, the distribution of 𝑧𝑖𝑚 is typically taken from external data (such as the population census)
while the distribution of 𝜈𝑖𝑚 is typically assumed to be a standard normal and independent across
components of 𝜈𝑖𝑚. In section 4.3 we discuss the implications of using an estimate of 𝐺𝑚.
A consumer inmarket𝑚maximizes (indirect) utility by choosing from the 𝐽𝑚 available products and

the outside good, indexed by zero. Let 𝑦𝑖𝑗𝑚 = 1 if consumer 𝑖 inmarket𝑚 chooses product 𝑗 and zero
otherwise. Utility of consumer 𝑖when purchasing product 𝑗 inmarket𝑚 is

𝑢𝑖𝑗𝑚 = 𝛿𝑗𝑚 + 𝜇𝑧𝑖𝑚𝑗𝑚 + 𝜇𝜈𝑖𝑚𝑗𝑚 + 𝜀𝑖𝑗𝑚, (1)

where 𝛿𝑗𝑚 = 𝑥▿𝑗𝑚𝛽 + 𝜉𝑗𝑚 represents themean utility for product 𝑗 for consumers inmarket𝑚, 𝜇𝑧𝑖𝑚𝑗𝑚 =
𝑥▿𝑗𝑚𝜣 𝑧𝑧𝑖𝑚 = ∑𝑘,𝑘′ 𝜣

𝑧
𝑘𝑘′𝑥

𝑘
𝑗𝑚𝑧

𝑘′
𝑖𝑚 represents deviations frommean utility due to observed demographic

variables 𝑧𝑖𝑚, and 𝜇
𝜈𝑖𝑚
𝑗𝑚 = 𝑥▿𝑗𝑚𝜣 𝜈𝜈𝑖𝑚 = ∑𝑘,𝑘′ 𝜣

𝜈
𝑘𝑘′𝑥

𝑘
𝑗𝑚𝜈

𝑘′
𝑖𝑚 are deviations due to taste shocks 𝜈𝑖𝑚. In

most applications, several elements of 𝜣 𝑧 and 𝜣 𝜈 are restricted (e.g., 𝜣 𝜈 is often assumed to be
diagonal), so we will refer to 𝜃 𝑧 and 𝜃 𝜈 as the vectors of free parameters of 𝜣 𝑧, 𝜣 𝜈 to estimate.
Although there is no need to assume 𝛿, 𝜇𝑧 and 𝜇𝜈 have a linear form, we consider the linear form
since it is themost common specification and simplifies notation.8 Aswe shall see below, some of our
results depend onwhether 𝜃 𝑧 = 0which implies 𝜕𝑧𝑢𝑖𝑚 = 𝜕𝑧𝜇

𝑧𝑖𝑚
𝑚 = 0, i.e., when changes in observed

demographics do not affect utility. Utility of the outside good is normalized to 𝑢𝑖0𝑚 = 𝜀𝑖0𝑚. When
convenient, we collect the consumer heterogeneity parameters into the vector 𝜃 = [𝜃𝑧▿, 𝜃𝜈▿]▿.
The model yields choice probabilities for consumer 𝑖 of selecting product 𝑗 conditional on demo-

graphics 𝑧𝑖𝑚 and product characteristics𝑋𝑚, 𝜉𝑚 as a function of parameters,

𝜎𝑧𝑖𝑚𝑗𝑚 (𝜃, 𝛿) = ℙ(𝑦𝑖𝑗𝑚 = 1 ∣ 𝑧𝑖𝑚, 𝑋𝑚, 𝜉𝑚; 𝜃, 𝛿) = ∫
exp(𝛿𝑗𝑚 + 𝜇𝑧𝑖𝑗𝑚 + 𝜇𝜈𝑖𝑗𝑚)

∑𝐽𝑚
𝑘=0 exp(𝛿𝑘𝑚 + 𝜇𝑧𝑖𝑘𝑚 + 𝜇𝜈𝑖𝑘𝑚)⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝓈𝑗𝑚(𝑧𝑖𝑚,𝜈;𝜃,𝛿)≕𝓈𝑖𝑗𝑚(𝜈;𝜃,𝛿)

d𝐹𝑚(𝜈), (2)

where 𝛿0𝑚 = 𝜇𝑧𝑖𝑚0𝑚 = 𝜇𝜈𝑖𝑚0𝑚 = 0 for all 𝑖, 𝑚.
Similarly, unconditional choice probabilities, which correspond to expected market shares, are

obtained by integrating𝜋𝑧𝑗𝑚 with respect to the distribution of consumer demographics,

𝜎𝑗𝑚(𝜃, 𝛿) = ℙ(𝑦𝑖𝑗𝑚 = 1 | 𝑋𝑚, 𝜉𝑚) = ∫𝜎𝑧𝑗𝑚(𝜃, 𝛿)d𝐺𝑚(𝑧). (3)

As noted by Berry (1994), whenwe fix 𝜃, (3) defines a one-to-onemapping from 𝛿𝑚 to unconditional
choice probabilities in amarket. We denote the inversion of this mapping as 𝛿𝑚(𝜃, 𝜋𝑚) and let 𝛿(𝜃, 𝜋)
represent its concatenation acrossmarkets.
Themodel also imposes product level exogeneity restrictions of the form,

8Additive separability of 𝛿 in 𝜉𝑖 is essential to our approach.
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𝔼(𝜉𝑗𝑚 ∣ 𝑏𝑗𝑚) = 0, (4)

where 𝑏𝑗𝑚 is a vector of instruments including ̃𝑥𝑗𝑚. Further, 𝑏𝑗𝑚may contain additional instruments.
The literature has used various approaches such as cost shifters, BLP instruments (in various forms,
including the “differentiation instruments” proposed by GH20), Hausman instruments, andWaldfogel
instruments. These moment restrictions will serve two purposes. First, they are needed to identify
mean product utility parameters, 𝛽 . Second, if 𝑑𝑏 > 𝑑𝛽 theymay provide additional information that
is potentially useful in estimating othermodel parameters. For example BLP95 uses restrictions of this
form to recover consumer heterogeneity parameters 𝜃 in the absence of consumer level data.
2.2 Data
The researcher has access to two types of data on consumer choices. First, she observesmarket level

data on the quantity of purchases, the vector of characteristics 𝑥𝑗𝑚 of each product, and the totalmarket
size,𝑁𝑚.9 Each consumer has unit demand and purchases either one of the “inside” products or the
outside good. That is, the researcher can constructmarket shares 𝑠𝑗𝑚 = 𝑁−1

𝑚 ∑𝑁𝑚
𝑖=1 𝑦𝑖𝑗𝑚. Note that the

observed market shares 𝑠𝑚 need not equal choice probabilities 𝜋𝑚 due to the finite population size,
however 𝑠𝑚

𝑝
→𝜋𝑚 as𝑁𝑚→∞.

Second, for a subset of 𝐼𝑚 consumers, the researcher observes both the consumers’ choices and
their demographics. That is, the researcher observes {(𝑦𝑖𝑚, 𝑧𝑖𝑚)} for these consumers. We use𝐷𝑖𝑚 as a
dummy variable to denote whether consumer 𝑖 is in this micro-sample. As wewill describe below, our
methodology combines themicro-sample with the product shares by integrating out 𝑧𝑖𝑚 in the choice
probabilities when individual 𝑖 is outside the micro-sample. We can accommodate several forms of
selection. In app. A.2 we show that for random sampling and deterministic selection on choices 𝑦𝑖𝑚
(e.g., administrative data when outside good purchases are not reported) no adjustments are needed.
We further show how to accommodate selection on demographics 𝑧𝑖𝑚.

3 Estimator
This section proposes CLEER, which combines themixed data likelihood, �̂�(𝜃, 𝛿), of themicro and

macro choice data and a GMMobjective function ̂𝜒 based on (4),

( ̂𝜃, ̂𝛿, ̂𝛽) = argmin
𝜃,𝛿,𝛽

(− log �̂�(𝜃, 𝛿) + ̂𝜒(𝛽, 𝛿)). (5)

Notice that the likelihood is a function of (𝜃, 𝛿) but not 𝛽, whereas the product level moments (PLMs)
are functions of (𝛽, 𝛿) but not 𝜃. This separability has been noted previously in the literature, but will
play an important role inmaking our estimator computationally feasible. The following two subsections
describe the two terms of the objective function in detail.
3.1 Likelihood components of the objective function
Themixed data likelihood contains two parts relating to themicro andmacro data. To understand its

elements, first suppose that we observed 𝑦𝑖𝑚 for all𝑁𝑚 individuals inmarket𝑚. Recall that if 𝐷𝑖𝑚 = 1,
(𝑦𝑖𝑚, 𝑧𝑖𝑚) are jointly observed. Then the loglikelihoodwould be,10

log �̂�(𝜃, 𝛿) =
𝑀
∑
𝑚=1

𝐽𝑚
∑
𝑗=0

𝑁𝑚

∑
𝑖=1

𝑦𝑖𝑗𝑚 (𝐷𝑖𝑚 log𝜎𝑧𝑖𝑚𝑗𝑚 (𝜃, 𝛿) + (1 − 𝐷𝑖𝑚) log𝜎𝑗𝑚(𝜃, 𝛿)) , (6)

This is an extension of the standard mixed logit estimator for𝑁𝑚 observations where 𝑧𝑖𝑚 is missing
when 𝐷𝑖𝑚 = 0. The loglikelihood sums over all 𝑁𝑚 consumers in the market. If an observation 𝑖 is
9As in the previous literature, researchers need to observe or𝑁𝑚 in order to compute market shares from quantity data.
10For expositional simplicity, we consider the cases of random selection or deterministic selection on 𝑦𝑖⋅𝑚 into the micro
sample. As discussed in app. A.2, selection on demographics requires an adjustment to account for sampling.
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in the micro data then we see 𝑧𝑖𝑚 and can condition on it, whereas otherwise we integrate over the
distribution of 𝑧𝑖𝑚 conditional on this consumer not being in the consumer sample.
Of course, we do not directly observe the choices of consumers who are not in the micro sample.

However, the loglikelihood can be equivalently written in terms of the consumer level observations and
themarket level share data,

log �̂�(𝜃, 𝛿) =
𝑀
∑
𝑚=1

𝐽𝑚
∑
𝑗=0

𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚𝑦𝑖𝑗𝑚 log
𝜎𝑧𝑖𝑚𝑗𝑚 (𝜃, 𝛿)
𝜎𝑗𝑚(𝜃, 𝛿)⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

micro

+
𝑀
∑
𝑚=1

𝑁𝑚
𝐽𝑚
∑
𝑗=0

𝑠𝑗𝑚 log𝜎𝑗𝑚(𝜃, 𝛿)
⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

macro

, (7)

where the first termis thecontributionof theconsumer leveldataand the second termis thecontribution
of themarket level data. In order to express the second term using observedmarket shares, we add and
subtract log𝜎𝑗𝑚 to control for the fact that the consumer level data represent a subset of the consumers
whomake up themarket. It is convenient to refer to the two terms of the likelihood separately, so we
define log �̂�⬩ and log �̂�◾ as themicro andmacro termsof (7), respectively. Alternatively, the estimator can
be written by adjusting themacro term to avoid double counting the consumers in themicro-sample:

log �̂�(𝜃, 𝛿) =
𝑀
∑
𝑚=1

𝐽𝑚
∑
𝑗=0

𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚𝑦𝑖𝑗𝑚 log𝜎𝑧𝑖𝑚𝑗𝑚 (𝜃, 𝛿)
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

micro

+
𝑀
∑
𝑚=1

𝐽𝑚
∑
𝑗=0

(𝑁𝑚𝑠𝑗𝑚 −
𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚𝑦𝑖𝑗𝑚) log𝜎𝑗𝑚(𝜃, 𝛿)
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

macro

. (8)

These two formulations, while equivalent, emphasize different features of the estimator so wewill refer
to the one that is most convenient at the time.
Themixed data likelihood can be optimized in isolation to yield an estimator for (𝜃 , 𝛿 ). Since the

first stage does not separate 𝑥 from 𝜉, endogeneity concerns do not arise. This estimator can be paired
with a plug-in estimator for 𝛽 —utilizing the instruments 𝑏—to yield a two-step estimator. As it is a
useful basis for comparison, we refer to this as themixed data likelihood two-step estimator (MDLE).
Under stronger assumptions than are necessary for CLEER, the two-step estimator is consistent
and asymptotically normal. However, it is neither conformant nor generally efficient. The reason
is straightforward: the MDLE does not incorporate information contained in the PLMs (4) when
estimating 𝜃 .
To summarize, themixed data likelihoodmakes full use of themicro andmacro choice data.

3.2 Product Level Moments (PLM)
The CLEER objective function combines the mixed data likelihood with an additional term that

penalizes violations of the product level exogeneity restrictions,

̂𝜒(𝛽, 𝛿) = 1
2�̂�

▿(𝛽, 𝛿)�̂��̂�(𝛽, 𝛿) (9)

where �̂� is a positive definite weightmatrix and

�̂�(𝛿, 𝛽) =
𝑀
∑
𝑚=1

𝐽𝑚
∑
𝑗=1

𝑏𝑗𝑚(𝛿𝑗𝑚 − 𝛽▿𝑥𝑗𝑚). (10)

In practice, an initial choice of �̂�would be (𝐵▿𝐵)−1, where 𝐵 is the 𝐽 × 𝑑𝑏matrix with 𝐽 = ∑𝑚 𝐽𝑚 rows
𝑏▿𝑗𝑚. Note that, unlike in standalone GMMestimation, the scaling factor 1/2 in front of the ‘J statistic’ in
(9) matters since it affects the relative weight placed on log �̂� versus ̂𝜒 in the objective function.
If the dimension of 𝑏𝑗𝑚, 𝑑𝑏, is the same as that of 𝛽 , 𝑑𝛽, a situation we shall refer to as exact

identification of 𝛽 then 𝜃 , 𝛿 are estimated off the likelihood portion and 𝛽 off the GMMportion. In
this special case, CLEER is equivalent to theMDLE. Additional restrictions result in overidentification
of 𝛽 which can be used to aid the estimation of 𝜃 . Indeed, then ̂𝜒 will generally be positive (i.e.
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nonzero) so that both log �̂� and ̂𝜒 contribute to the estimation of 𝜃 , 𝛿 . However, because themicro
log likelihood sums over 𝐼 = ∑𝑀

𝑚=1 𝐼𝑚 terms whereas ̂𝜒 involves sums over 𝐽 terms these additional
product level restrictions can be asymptotically negligible for 𝜃 , 𝛿 as we discuss in section 5.2.
To achieve efficiency, 𝑏𝑗𝑚 should be chosen via a two-step procedure to be the optimal instruments

for 𝜃 , 𝛽 in the sense of Chamberlain (1987). In this case 𝑑𝑏 = 𝑑𝜃 + 𝑑𝛽, and generally (10) will not be
zero at the optimum, so the choice �̂�matters.

4 Consistency and Asymptotic Normality
This section formally establishes the consistency and asymptotic normality of CLEER as the number

of markets𝑀 grows. This is contrast to the proof of consistency Berry et al. (2004b) where𝑀 is fixed
but the number of products within amarket grows. The proof is complicated by several features of the
estimator. In particular, [i] the dimension of 𝛿, the number of observed products across all markets, is
growingwith𝑀 by construction; [ii] the rate of convergence of the estimator depends on the relative
rates of divergence of themicro sample 𝐼, the number of markets𝑀, and the population of eachmarket
𝑁𝑚; [iii] the rate of convergence may be effected by weak identification arising from the the micro-
sample, the product level exclusion restrictions, or both.
While we have presented CLEER in its most natural form for applied work in section 3, the proof of

consistency is more straightforward if we write the estimator in a reparameterized and recentered, but
equivalent form, as we describe in the following subsection.
4.1 Objective function
Section 3 defines CLEER as an estimator of (𝜃 , 𝛿 , 𝛽 ). Since there is a one-to-onemapping between

mean product qualities, 𝛿, and unconditional choice probabilities,𝜋, for fixed consumer heterogeneity
parameters 𝜃 (Berry, 1994) and moreover since 𝛽 can be profiled out of the objective function, it is
equivalent towrite the estimator in terms of (𝜃, 𝜋)where𝜋 = [𝜋▿1 ,…, 𝜋

▿
𝑀]

▿with𝜋𝑚 = [𝜋1𝑚,…, 𝜋𝐽𝑚𝑚]
▿.

So the parameter vector 𝜋 excludes the outside good probabilities, 𝜋0𝑚 = 1 − ∑𝐽𝑚
𝑗=1 𝜋𝑗𝑚 and the

dimensions of 𝛿 and 𝜋 are both 𝐽.11 This is convenient because 𝑠𝑚
𝑝
→ 𝜋𝑚 independent of 𝜃 while

𝛿𝑚 = 𝛿𝑚(𝜃 , 𝜋𝑚) depends on the unknown 𝜃 .
Following this formulation, consider the sample objective function, which consists of three terms,

�̂�(𝜃, 𝜋) = ̂ℒ(𝜃, 𝜋) + �̂�(𝜃, 𝜋) = ̂ℒ⬩(𝜃, 𝜋) + ̂ℒ◾(𝜋) + �̂�(𝜃, 𝜋). (11)

The first term, ̂ℒ⬩, is the (negative) log likelihood of themicro data net of the contribution tomarket
shares (to avoid double counting with the second term, as above),

̂ℒ⬩(𝜃, 𝜋) = log �̂�⬩(𝜃 , 𝛿 )
�̂�⬩[𝜃, 𝛿(𝜃, 𝜋)]

= ∑
𝑚

̂ℒ⬩
𝑚(𝜃, 𝜋𝑚) = ∑

𝑚𝑖𝑗
𝐷𝑖𝑚𝑦𝑖𝑗𝑚[log

𝜍𝑖𝑗𝑚(𝜃 , 𝜋𝑚)
𝜍𝑖𝑗𝑚(𝜃, 𝜋𝑚)

− log
𝜋𝑗𝑚
𝜋𝑗𝑚

],

where 𝜍𝑖𝑗𝑚(𝜃, 𝜋𝑚) = 𝜎𝑧𝑖𝑚𝑗𝑚 [𝜃, 𝛿𝑚(𝜃, 𝜋𝑚)]. The only distinction between− log �̂�⬩ and ̂ℒ⬩ is that the latter
is recentered by a constant such that it is zero at the truth (𝜃 , 𝜋 ), as shown in the first equality. The
second line reorganizes ̂ℒ⬩ to introduce notation that will be useful in the proofs.
The second term is the (negative) log likelihood of themarket share data recentered such that it is

zero at the observedmarket shares and positive otherwise:

̂ℒ◾(𝜋) = log �̂�
◾[𝜃, 𝛿(𝜃, 𝑠)]

�̂�◾[𝜃, 𝛿(𝜃, 𝜋)]
= ∑

𝑚

̂ℒ◾
𝑚(𝜋𝑚) = ∑

𝑚
𝑁𝑚∑

𝑗
𝑠𝑗𝑚 log

𝑠𝑗𝑚
𝜋𝑗𝑚

, (12)

which is true for all 𝜃 ∈ 𝛩. Again, the final equalities present convenient reorganization for the proofs.

11The same will be true for other such vectors, e.g., �̂�, 𝑠.
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The third term �̂� is the PLM objective function ̂𝜒 evaluated at 𝛿 = 𝛿(𝜃, 𝜋), profiling out 𝛽:

�̂�(𝜃, 𝜋) = min
𝛽

̂𝜒{𝛽, 𝛿(𝜃, 𝜋)} = 1
2 min𝛽

‖𝒫𝐵[𝛿(𝜃, 𝜋) − 𝑋𝛽]‖2 = 1
2‖𝒫𝛿(𝜃, 𝜋)‖

2,

To simplify the presentation of the proof, we take �̂� = (𝐵▿𝐵)−1 in the second inequality. This
is not restrictive in view of the discussion in section 4.6, which considers alternatives choices of
�̂�, including those needed to use an optimal weight matrix or optimal instruments as described
in section 5.2. Hence 𝒫𝐵 = 𝐵(𝐵▿𝐵)−1𝐵▿ is the projection matrix onto the instruments 𝐵 and
𝒫 = 𝒫𝐵 − 𝒫𝒫𝐵𝑋 = 𝒫𝐵 − 𝒫𝐵𝑋(𝑋

▿𝒫𝐵𝑋)−1𝑋
▿𝒫𝐵.12

To see that this formulation is equivalent to CLEER presented in section 3: For any (𝜃′, 𝜋′)
that optimize �̂�, CLEER ( ̂𝜃, ̂𝛿, ̂𝛽) is then [𝜃′, 𝛿(𝜃′, 𝜋′), (𝑋▿𝒫𝐵𝑋)−1𝑋

▿𝒫𝐵𝛿(𝜃′, 𝜋′)] because �̂�(𝜃, 𝜋) =
min𝛽 ̂𝜒[𝛿(𝜃, 𝜋), 𝛽] and ̂ℒ(𝜃, 𝜋) = −{log �̂�[𝜃, 𝛿(𝜃, 𝜋)] + log �̂�⬩[𝜃 , 𝛿(𝜃 , 𝜋 )] + log �̂�◾(𝑠)}, where the
final two terms are constant with respect to themodel parameters. Given this, for the remainder of the
paper we will refer to themaximizer of (11) as ( ̂𝜃, �̂�) and refer to �̂� as the CLEER of market-level choice
probabilities.
To prove consistency of CLEER,wewill show that ( ̂𝜃, �̂�) converges to theminimizer of the population

analog, 𝛺(𝜃, 𝜋) = ℒ◾(𝜋) + ℒ⬩(𝜃, 𝜋) + 𝛷(𝜃, 𝜋), where ℒ◾(𝜋) = ∑𝑚𝑁𝑚∑𝑗 𝜋𝑗𝑚 log(𝜋𝑗𝑚 / 𝜋𝑗𝑚),
ℒ⬩(𝜃, 𝜋) = 𝔼[ ̂ℒ⬩(𝜃, 𝜋) ∣ 𝔸] with 𝔸 the sigma algebra generated by product characteristics and the
𝐷𝑖𝑚’s, and𝛷(𝜃, 𝜋) = ‖𝒫[𝛿(𝜃, 𝜋)− 𝛿(𝜃 , 𝜋 )]‖2 / 2. Note thatℒ◾, ℒ⬩, 𝛷 are chosen to ensure all are zero
at the truth.
4.2 Identification of Demographic and Random Coefficients
Consistency of CLEER requires that themodel is identified. While identification of 𝜋 is straightfor-

ward,wedefine identificationof 𝜃 in termsof𝛺evaluatedat the trueunconditional choiceprobabilities
𝜋 , i.e.

𝛺(𝜃, 𝜋 ) = ℒ⬩(𝜃, 𝜋 ) + 𝛷(𝜃, 𝜋 ), (13)

sinceℒ◾(𝜋 ) = 0. Clearly,𝛺(𝜃 , 𝜋 ) = 0. While (13) uses𝜋 , note thatℒ◾(𝜋) diverges for all𝜋 ≠ 𝜋
andso𝛺(𝜃, 𝜋)will aswell. Thereare twopossible sourcesof identification forour estimator, bothmaybe
weak. Let𝜌⬩(𝜃) be the rate ofℒ⬩(𝜃, 𝜋 ) and𝜌𝛷(𝜃) be the rate of𝛷(𝜃, 𝜋 ). Hence,𝜌id(𝜃) ≔ 𝜌⬩(𝜃)+𝜌𝛷(𝜃)
is the rate of 𝛺(𝜃, 𝜋 ). In the absence of weak identification, for all fixed 𝜃 ≠ 𝜃 , 𝜌⬩(𝜃) ∼ 𝐼 and
𝜌𝛷(𝜃) ∼ 𝑀, we do not assume that one of these rates is faster than the other.13 Wewill allow for weak
identification, which slows the rate of either or both 𝜌⬩(𝜃) and 𝜌𝛷(𝜃) as described below. To obtain
consistency𝜌id(𝜃)mustdiverge (fast enough) for all𝜃outsideaneighborhood𝛩𝜖 = {𝜃 ∈ 𝛩: ‖𝜃−𝜃 ‖ < 𝜖}
of 𝜃 (for any fixed 𝜖 > 0). However, the terms of 𝜌id(𝜃) need not satisfy our identification condition
individually, which is what gives rise to the conformance property.
Identification from PLMs occurs when 𝛷(𝜃, 𝜋 ) > 0 away from 𝜃 . Weak product identification

can slow 𝜌𝛷(𝜃) in amanner similar to traditional moment conditionmodels (e.g., weak instruments).
Identification from the micro sample occurs when ℒ⬩(𝜃, 𝜋 ) > 0 away from 𝜃 . This will fail, e.g.,
at 𝜃 𝑧 = 0 because 𝜍𝑖𝑗𝑚(0, 𝜃𝜈, 𝜋 ) = 𝜋 for all 𝑧𝑖𝑚 and so ℒ⬩(0, 𝜃𝜈, 𝜋 ) = 0 for all 𝜃𝜈.14 Weak micro
identification will occur for 𝜃 𝑧 drifting towards zero.

12The second equality requires 𝑋▿𝑃𝐵𝑋 be invertible, which would fail if the number of instruments were less than the
number of regressors or the instruments had no explanatory power. In these cases it may still be possible to identify 𝜃 ,
but not 𝛽 . To cover this, write𝒫more generally as𝒫 = 𝒫𝐵 −𝒫𝐵𝑋(𝒫𝐵𝑋)+ with ⋅+ denoting a Moore Penrose inverse.

13Indeed, in the absence of micro data, our estimator will still be consistent even though 𝐼 does not diverge.
14App. C provides an example and elaborates on the intuition for the identifying power of microdata within our model.
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4.3 Assumptions
We are now ready to turn to our formal assumptions, which begin with those regardingmicro and

product level identification.
As discussed above, micro identification will always fail if 𝜃 𝑧 = 0. When 𝜃 𝑧 ≠ 0, micro

identification will fail if there exists a 𝜃𝜈 ≠ 𝜃 𝜈 such that ℒ⬩(𝜃 𝑧, 𝜃𝜈, 𝜋 ) = 0, which implies
𝜍𝑖𝑗𝑚(𝜃 𝑧, 𝜃𝜈, 𝜋 ) = 𝜍𝑖𝑗𝑚(𝜃 𝑧, 𝜃 𝜈, 𝜋 ) for all 𝑖.15 However, this is unlikely to arise in applications as
this imposes 𝐽 × |𝒵| restrictions—which is infinite if 𝑧 is continuous—and 𝜃𝜈 is low dimensional. We
rule out these cases, whichwe interpret asmodelmisspecification on the part of the researcher, with
the following assumption.
Assumption A (Micro identification strength). Let 𝜆 = ‖𝜃 𝑧‖ and let 𝜌⬩(𝜃) = 𝐼‖𝜃 − 𝜃 ‖2𝜆 with
‖𝜃 − 𝜃 ‖2𝜆 = ‖𝜃𝑧 − 𝜃 𝑧‖2 + 𝜆2‖𝜃𝜈 − 𝜃 𝜈‖2. We have,

inf
𝜃∈𝛩:𝜌⬩(𝜃)>0

ℒ⬩(𝜃, 𝜋 )
𝜌⬩(𝜃)

⪰1,

where ⪰means that the left hand side is (element-wise) of greater or equal order compared to the
right-hand side.16

Following the weak identification literature, this assumption allows 𝜃 𝑧 to drift towards zero. The
parameter 𝐼𝜆2 plays a role analogous to the concentration parameter in the weak IV setting. If 𝜆 > 0,
the norm ‖ ⋅ ‖𝜆 is zero only at 𝜃 . If 𝜆 = 0, the norm is zero whenever 𝜃𝑧 = 𝜃 𝑧 = 0 (regardless of 𝜃𝜈).
Our next assumption essentially defines the identifying power in the PLMs.

Assumption B (Product level identification strength). Define 𝔻𝜃 = 𝜕𝜃▿𝛿 and 𝔻𝜋 = 𝜕𝜋▿𝛿 as
the derivatives of the Berry (1994) inversion 𝛿(𝜃, 𝜋) with respect to its arguments. Let 𝜌𝛷(𝜃) =
‖𝒫𝔻𝜃(𝜃 , 𝜋 )(𝜃 − 𝜃 )‖2 and assume that

inf
𝜃∈𝛩:𝜌𝛷(𝜃)>0

inf
𝑡≠0

𝛷(𝜃 + 𝑡(𝜃 − 𝜃 ), 𝜋 )
𝑡2𝜌𝛷(𝜃)

⪰ 1.

The rate 𝜌𝛷 is analogous to the concentration parameter in the weak identification literature.17

For identification, 𝜌id(𝜃) = 𝜌⬩(𝜃) + 𝜌𝛷(𝜃)must diverge for all 𝜃 outside a neighborhood𝛩𝜖 = {𝜃 ∈
𝛩: ‖𝜃 − 𝜃 ‖ < 𝜖} of 𝜃 (for any fixed 𝜖 > 0). Observe that we allow the component responsible for 𝜌id(𝜃)
diverging at a particular value of 𝜃 to depend on the value of 𝜃. While identification per se only requires
divergence, our consistency proof requires it do so at a minimum rate for all 𝜃 ∈ 𝛩𝑐

𝜖. The following
assumptionmakes this explicit.
Assumption C (Identification). Let 𝜅 = exp(−4𝜅↑𝛿)with 𝜅

↑
𝛿 = 2√2𝑐∗𝜉 log𝑀 for 𝑐∗𝜉 defined in G. Then,

∀𝜖 > 0: ̆𝜌id(𝜖) ≔ inf𝜃∈𝛩𝑐
𝜖 𝜌id(𝜃)≻𝜅

−12 log2(𝐼 + 𝑀) ≻ 1.
This rate should be compared to the rate that would arise under standard assumptions, i.e.max(𝑀, 𝐼).

C relaxes this significantly to accommodate a wide variety of relative rates of divergence, accounting
for the size and identifying power of themicro sample, market population, and PLMs. The rate used
here diverges slower than any power of𝑀 (times log2 𝐼) but faster than any power of log𝑀; 𝜅 is slowly

15In this statement we can evaluate ℒ⬩(𝜃 𝑧, 𝜃𝜈, 𝜋 ) at 𝜃 𝑧 since the variation in features is observed. If 𝑧𝑖𝑚 has zero
variance then identification also fails because there is then collinearity between 𝑧 times 𝑥 and 𝑥. This possibility is also
ruled out by A.

16≻,⪯,≺,≃ are analogously defined.
17There are four minor differences: (1) the model is nonlinear so now the Jacobian depends on parameters; (2) 𝜋 is fixed at
the truth𝜋 (there is no analog to our𝜋 in the context of a standard concentration parameter); (3) 𝛽 has been concentrated
out; (4) the standard concentration parameter omits the (𝐵▿𝐵)−1 in our identity matrix and would include 𝜍2𝜉 in the
denominator.
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varying.18 So our rate condition is not restrictive.
The next three assumptions deal with sampling of markets, consumers and products. It is possible to

relax these inmany directions, but we focus on the standard case.
Assumption D (Markets). Product characteristics, product instruments, consumer demographics
and preferences (𝑥𝑚, 𝜉𝑚, 𝑏𝑚, 𝑧𝑚, 𝜈𝑚, 𝜀𝑚) are independent acrossmarkets.
Independence across markets could be relaxed. This would be relevant if e.g. some products are

offered inmultiplemarkets. The bulk of the demand literature assumes independentmarkets while
incorporating similarities in products acrossmarkets by including “brand”, “model” or “SKU” dummies
in 𝑥𝑗𝑚.19

Assumption E (Consumers). [i] Consumer demographics and preferences (𝑧𝑖𝑚, 𝜈𝑖𝑚, 𝜀𝑖⋅𝑚) in a given
market are 𝑁𝑚 i.i.d. draws from a superpopulation with known distribution 𝐺 × 𝐹 × Gumbel𝐽𝑚+1;
[ii] Consumers in themicro sample are 𝐼𝑚 independent drawswithout replacement from the consumer
population.
While we assume the distribution of consumer demographics is known and constant across markets,

it is likely to be estimated in practice and could be allowed to vary by market. As a result, E implies
that themicro sample is compatible with the population in the sense of CG23. In app. A, we discuss
ways to relax this assumption to allow for estimation of 𝐺 and some forms of selection. In many
cases—e.g., when the sample is selected based on consumer choices 𝑦 or demographics 𝑧—these can be
accommodatedwithout adjusting our inference procedure beyond utilizing sampling weights in the
latter case. In other cases–e.g., when sample selection depends on unobserved tastes 𝜈𝑖𝑚—amodel of
selection would be required, as it would be to incorporate selection on unobservables utilizing a GMM
micromoments estimator (Petrin, 2002; Berry et al., 2004a).
Assumption F (Products). [i] The number of products in a market 𝐽𝑚 satisfies: 1 ≤ 𝐽𝑚 ≤ ̄𝐽 < ∞
for ̄𝐽 independent of 𝑀; [ii] Product characteristics and instruments in a market (𝑥𝑗𝑚, 𝜉𝑗𝑚, 𝑏𝑗𝑚) are
independent across 𝑗 and satisfy 𝔼(𝜉𝑗𝑚 ∣ 𝑏𝑗𝑚) = 0 and 0 < inf𝑏 𝕍(𝜉𝑗𝑚 ∣ 𝑏𝑗𝑚 = 𝑏) ≤ sup𝑏 𝕍(𝜉𝑗𝑚 ∣ 𝑏𝑗𝑚 =
𝑏) < ∞; [iii] Product instruments have full rank, 𝔼(𝑏𝑗𝑚𝑏

▿
𝑗𝑚) > 0; [iv] The rank of 𝔼(𝑏𝑗𝑚𝑥

▿
𝑗𝑚) is at least

𝑑𝑥.
The condition on the instruments𝑏𝑗𝑚 is standard, althoughwedonot place conditions on thedimension
or strength of 𝑏𝑗𝑚 beyondwhat is assumed in C. If 𝑑𝑏 = 𝑑𝑥, then 𝜌𝛷(𝜃) = 0 and PLMs do not contribute
to the identification of 𝜃 , 𝜋 . When 𝑑𝑏 < 𝑑𝑥 (contra F[iv]), 𝛽 is not identified.
The next two assumptions are technical although (some version thereof) is implicit inmuch of the

literature.
Assumption G (Tails). [i] The 𝑥𝑗𝑚’s are drawn from a distribution whose support𝒳𝑚 is bounded;
[ii] the 𝜉𝑗𝑚’s are i.i.d. subgaussian with optimal variance proxy (OVP) 𝑐∗𝜉 < ∞;20 [iii] the 𝑧𝑖𝑚’s are
i.i.d. subgaussian with OVP 𝑐∗𝑧 < ∞ (conditional on 𝔸); [iv] the 𝑏𝑗𝑚’s are drawn such that ∃ℂ𝑏 < ∞:
ℙ[max𝑚 𝔼(‖𝑏𝑗𝑚‖2 ∣ 𝑁𝑚) > ℂ𝑏] = 0.
Assumption H (Parameter Space). [i]𝛩 is compact and 𝜃 is an interior point; [ii]ℬ, the parameter
space of 𝛽 , is compact; [iii] ℿ, the parameter space of 𝜋 is ∏𝑀

𝑚=1ℿ𝑚 with ℿ𝑚 = {𝜋𝑚: ∀𝑗 =

18If𝑀 were fixed, C is satisfied if ̆𝜌id(𝜖) diverges at least square-logarithmically in 𝐼.
19Such an approach is innocuous provided the number of brands, models, or SKUs is small relative to the number of
products, which grows with𝑀 under our assumptions. A notable alternative approach is Moon et al. (2018), which
assumes a factor structure on 𝜉.

20i.e. ∀𝑡: log𝔼 exp[𝑡(𝜉𝑗𝑚 − 𝔼𝜉𝑗𝑚)] ≤ 𝑐∗𝜉𝑡
2/2, which implies that ∀𝑡 ≥ 0:ℙ(|𝜉𝑗𝑚 − 𝔼𝜉𝑗𝑚| > 𝑡) ≤ 2 exp[−𝑡2/(2𝑐∗𝜉)].
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ℿ𝑚ℿ𝜅
𝑚ℿ𝜅𝜋

𝑚𝜋𝑚

Figure 1: Representation of the parameter space for 𝜋𝑚.

1,…, 𝐽𝑚: 0 ≤ 𝜋𝑗𝑚 and ∑𝐽𝑚
𝑗=1 𝜋𝑗𝑚 ≤ 1}.

Assumptions G andH imply (amongmany other things) thatmin𝑚,𝑗 𝜋𝑗𝑚 ≻ 𝜅3/4, as we show in L9(b),
whichwill be helpful for showing that𝜋𝑚 for whichmin𝑚,𝑗 𝜋𝑗𝑚 decreases too fast cannotminimize �̂�
(with probability approaching one). However, this does not imply that observedmarket shares 𝑠𝑗𝑚 > 0
for all 𝑗,𝑚.
Finally, in order to estimatemarket shares accurately, wemust assume that the population of markets

grows with the data. Note that this is a significant relaxation over the standard assumption in the
literature since BLP95 that unconditional choice probabilities 𝜋 are observed and equal to 𝑠, or
equivalently that𝑁𝑚 = ∞.
Assumption I (Population and sample growth). [i] As𝑀 grows, the market populations increase
such that 𝜌𝑁 = ∑𝑚𝑁−1

𝑚 converges and 𝜌ᵆ = 1 / min𝑚√𝑁𝑚 ≺ 𝑀−𝑝 for some (real valued) 𝑝 > 0.
Specifically, 𝜌𝑁≺𝜅12 / log

2max𝑚(𝐼𝑚+𝑀). [ii]max𝑚 𝐼𝑚 sup𝜃∈𝛩,‖𝜃−𝜃 ‖𝜆>0
[‖𝜃 −𝜃 ‖2𝜆 / 𝜌id(𝜃)] ≺ 1.

While we do not assume that observedmarket shares are equal to unconditional choice probabilities,
I[i] is sufficient to guarantee that ‖𝑠 − 𝜋 ‖ converges to zero in the limit. It is weaker than assuming
that a specific market population𝑁𝑚 grows faster than𝑀.
There are several ways in which I[ii] can be satisfied. One is that the PLMs contain the dominant

share of identification. Another ismax𝑚 𝐼𝑚/𝐼 ≺ 1, i.e. an asymptotically negligible share of themicro
sample is concentrated in any onemarket.
4.4 Consistency
We can now formally establish the asymptotic properties of the CLEER, starting with consistency.

Theorem 1. Under A to I, CLEER is consistent, i.e., (a) ̂𝜃 − 𝜃 ≺ 1; (b) max𝑚 ‖�̂�𝑚 − 𝜋𝑚‖ ≺ 1,
(c) ∀𝑚: ‖ ̂𝛿𝑚 − 𝛿𝑚‖ ≺ 1; and (d) ̂𝛽 − 𝛽 ≺ 1.
We present the basic steps of the proof belowwith supporting lemmas relegated to app. B.1.

Proof. We first show consistency of ̂𝜃, with the remaining parameters following straightforwardly
below. For ̂𝜃, it is sufficient to show ∀𝜖 > 0: lim𝑀→∞ ℙ[inf𝛩𝑐

𝜖×ℿ �̂�(𝜃, 𝜋) − �̂�(𝜃 , 𝑠) ≤ 0] = 0, since
infℿ �̂�(𝜃 , 𝜋) ≤ �̂�(𝜃 , 𝑠). To do so, steps 1 to 5 show that lim𝑀→∞ ℙ[inf𝛩𝑐

𝜖×ℿ𝜅 �̂�(𝜃, 𝜋)−�̂�(𝜃 , 𝑠) ≤ 0] =
0 forℿ𝜅 = ∏𝑚ℿ𝜅

𝑚 whereℿ𝜅
𝑚 = {𝜋𝑚:min𝑗 𝜋𝑗𝑚 ≥ 𝜅}with 𝜅 as defined in C. Step 6 extends this result

fromℿ𝜅 toℿ.

Step 1. Decompose �̂�(𝜃, 𝜋) − �̂�(𝜃 , 𝑠) by adding and subtracting to yield four terms,

�̂�(𝜃, 𝜋)−�̂�(𝜃 , 𝑠) =
A©

⏞⎴⎴⏞⎴⎴⏞𝛺⬩(𝜃, 𝜋 )+
B©

⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞𝛺⬩(𝜃, 𝜋) − 𝛺⬩(𝜃, 𝜋 )+

C©

⏞⎴⎴⎴⏞⎴⎴⎴⏞̂ℒ◾(𝜋) − ̂ℒ◾(𝑠) +

D©

⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞𝛥�̂�⬩(𝜃, 𝜋) − �̂�⬩(𝜃 , 𝑠),
(14)
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where𝛥�̂�⬩ = 𝛥 ̂ℒ⬩ + 𝛥�̂�with𝛥 ̂ℒ = ̂ℒ⬩ − ℒ⬩ and𝛥�̂� = �̂� − 𝛷.

Step 2. The first two terms on the right-hand side in (14) consist exclusively of population objects.
We note the following properties of these terms at all 𝜃 ∈ 𝛩𝑐

𝜖 and all 𝜋 ∈ ℿ𝜅: [i] because
𝛺⬩ = ℒ⬩ + 𝛷 is nonnegative, A© ≥ 0; [ii] moreover, by definition, A© ∼ 𝜌id(𝜃); [iii] A© + B© =
𝛺⬩(𝜃, 𝜋) ≥ 0.

Step 3. Term C© is the difference between themacro likelihood term at the candidate parameter𝜋
and observedmarket shares 𝑠. We show that this diverges rapidly for𝜋 far from 𝑠. Let 𝜌◾(𝜋) =
∑𝑚 𝜌◾𝑚(𝜋𝑚) = ∑𝑚𝑁𝑚‖𝑠𝑚 − 𝜋𝑚‖2. By themean value theorem (MVT), C© = ̂ℒ◾(𝜋) ≥ 𝜌◾(𝜋) /
2 ≥ 0. This follows from expanding ̂ℒ◾

𝑚(𝜋𝑚) / 𝑁𝑚 = ∑𝑗 𝑠𝑗𝑚 log(𝑠𝑗𝑚 / 𝜋𝑗𝑚) as a function of 𝑠𝑚
around𝜋𝑚:

∑
𝑗
𝑠𝑗𝑚 log

𝑠𝑗𝑚
𝜋𝑗𝑚

= ∑
𝑗
1 ⋅ (𝑠𝑗𝑚 − 𝜋𝑗𝑚) +

1
2 ∑𝑗

(𝑠𝑗𝑚 − 𝜋𝑗𝑚)2

�̊�𝑗𝑚
≥
‖𝜋𝑚 − 𝑠𝑚‖2

2 . (15)

Step 4. We will need to show that the nuisance term D© diverges sufficiently slowly relative to
A© + B© + C©. This is accomplished by showing sufficiently slow divergence relative to A© + B©
or C©. Divergence rate of D© relative to A© + B© is controlled by C, while divergence relative
to C© is controlled by I. It will be sufficient that sup𝛩𝑐

𝜖×ℿ𝜅
| D©/𝜌𝐷| ≺ 1, where 𝜌𝐷(𝜃, 𝜋) =

𝜂max{𝜂𝜌id(𝜃), 𝜌◾(𝜋)}with 𝜂 = 𝜅3, as we show here. Split the nuisance term D© by likelihood
and product level moment terms and deal with them separately:

D© = 𝛥�̂�⬩(𝜃, 𝜋) − �̂�⬩(𝜃 , 𝑠) = 𝛥 ̂ℒ⬩(𝜃, 𝜋) − ̂ℒ⬩(𝜃 , 𝑠) + 𝛥�̂�(𝜃, 𝜋) − �̂�(𝜃 , 𝑠).

We show convergence results for each term of D© in supporting lemmas: • L2(b) shows
sup𝛩𝑐

𝜖×ℿ𝜅
|𝛥�̂�(𝜃, 𝜋) / 𝜌𝐷(𝜃, 𝜋)| ≺ 1; • L2(c) shows �̂�(𝜃 , 𝑠) ⪯ 1. • L3(b) shows sup𝛩𝑐

𝜖×ℿ𝜅

|𝛥 ̂ℒ⬩(𝜃, 𝜋) / 𝜌𝐷(𝜃, 𝜋)| ≺ 1. • L3(c) shows sup𝛩𝑐
𝜖×ℿ𝜅

| ̂ℒ⬩(𝜃 , 𝑠) / 𝜌𝐷(𝜃, 𝜋)| ≺ 1. Taken together,

sup
𝛩𝑐
𝜖×ℿ𝜅

D©
𝜂max{𝜂𝜌id(𝜃), 𝜌◾(𝜋)}

= sup
𝛩𝑐
𝜖×ℿ𝜅

D©
𝜌𝐷(𝜃, 𝜋)

≺ 1.

Step 5. Wenow consider two cases, which correspond to whether𝜋 is close to 𝑠 or not. In the first
casewe consider,𝜋 far from 𝑠, and themacro likelihood— ̂ℒ◾(𝜋) in term C©—will diverge fast and
dominate the nuisance term D© for all values of 𝜃, thus guaranteeing that �̂�(𝜃, 𝜋) diverges for this
case. We then consider the case where𝜋 is near 𝑠. Here, A©will dominate D©Moreover,𝛺⬩(𝜃, 𝜋 )
is well approximated by𝛺⬩(𝜃, 𝜋) and so B© is negligible compared to A©. Again, �̂�(𝜃, 𝜋) diverges
under this case. These cases are now presented formally:

1. For all 𝜃, 𝜋 such that 𝜌◾(𝜋) > 𝜌id(𝜃)𝜂: 𝜌𝐷(𝜃, 𝜋) = 𝜂𝜌◾(𝜋) ≺ 𝜌◾(𝜋). Hence C© dominates D©
ormore formally,

sup
𝛩𝑐
𝜖×ℿ𝜅

{𝟙[𝜌◾(𝜋) > 𝜌id(𝜃)𝜂]
| D©|
C© } ≺ 1.

Therefore, since A©+ B© and C© are non-negative from steps 2 and 3,

ℙ{ sup
𝛩𝑐
𝜖×ℿ𝜅

𝟙[𝜌◾(𝜋) > 𝜌id(𝜃)𝜂][�̂�(𝜃, 𝜋) − �̂�(𝜃 , 𝑠)] < 0} ≺ 1.

2. For all 𝜃, 𝜋 such that 𝜌◾(𝜋) ≤ 𝜌id(𝜃)𝜂: 𝜌𝐷(𝜃, 𝜋) = 𝜂2𝜌id(𝜃) ≺ 𝜌id(𝜃). Hence A© dominates
D© ormore formally,

sup
𝛩𝑐
𝜖×ℿ𝜅

{𝟙[𝜌◾(𝜋) ≤ 𝜌id(𝜃)𝜂]
| D©|
A© } ≺ 1.

13



Moreover, writing B© = [𝛷(𝜃, 𝜋) − 𝛷(𝜃, 𝜋 )] + [ℒ⬩(𝜃, 𝜋) − ℒ⬩(𝜃, 𝜋 )], L2(a) and L3(a)
respectively show that the terms of B© are dominated by A© for 𝜋 ∈ ℿ𝜅. As before, C© is
non-negative. Combining these,

ℙ{ sup
𝛩𝑐
𝜖×ℿ𝜅

𝟙[𝜌◾(𝜋) ≤ 𝜌id(𝜃)𝜂][�̂�(𝜃, 𝜋) − �̂�(𝜃 , 𝑠)] < 0} ≺ 1.

Combining cases establishesℙ{sup𝛩𝑐
𝜖×ℿ𝜅

[�̂�(𝜃, 𝜋) − �̂�(𝜃 , 𝑠)] < 0} ≺ 1.

Step 6. Finally, L4 extends the above results fromℿ𝜅 toℿ. The intuition for this step focusing on a
singlemarket is illustrated in fig. 1. Fig. 1 depicts the parameter space for choice probabilities in
market𝑚,ℿ𝑚; the subsetℿ𝜅

𝑚 for which we have already shown consistency above, and a further
subset ℿ𝜅𝜋

𝑚 . L9(b) (using G and H) shows that ℿ𝜅𝜋
𝑚 contains 𝜋𝑚 with probability approaching

one. As the arrows indicate,ℿ𝜅𝜋
𝑚 andℿ𝜅

𝑚 both increase toℿ𝑚 as𝑀 →∞. To complete this step,
wemust show that candidate 𝜋𝑚 ∉ ℿ𝜅

𝑚 (the blue band) are sufficiently far from 𝜋𝑚 (which is
inside the green circle). L4 establishes that this distance (bounded by themaize band) shrinks
sufficiently slowly such that themacro likelihood ̂ℒ◾ dominates the other terms in �̂� anddiverges
faster than �̂�(𝜃 , 𝜋 ). The proof establishes this for the entire parameter vector𝜋, which ensures
uniformity acrossmarkets. Thus, (with probability approaching one) no𝜋 ∉ ℿ𝜅 can optimize
𝛺(𝜃, 𝜋) over𝛩𝑐

𝜖 × ℿ.

This completes the proof of consistency of ̂𝜃. L5 uses consistency of ̂𝜃 to establish consistency of the
remaining parameters �̂�, ̂𝛿, ̂𝛽.

4.5 Asymptotic normality
Having established consistency, the following theorem establishes that the CLEER of consumer

heterogeneity ̂𝜃 is asymptotically normal. Once this is established, normality of the remaining
parameters are straightforward andwe address them immediately following the proof.
Theorem 2. Under A to I, for ̂𝛤𝜃 ≔ �̂�𝜃𝜃

−1/2 ≔ (�̂�𝜃𝜃 − �̂�𝜃𝜋�̂�−1
𝜋𝜋�̂�𝜋𝜃)−1/2, ̂𝛤−1𝜃 ( ̂𝜃 − 𝜃 )

𝑑
→𝒩(0, 𝒱𝜃), for

𝒱𝜃 given in L8.
The formula for𝒱𝜃 simplifies to the identity matrix if the likelihood portion of the objective function

dominates asymptotics for ̂𝜃. If (𝐵▿𝐵)−1 is the optimal weightmatrix then𝒱𝜃 = 𝕀, also. As suggested in
section 4.6, instruments can always be chosen tomake (𝐵▿𝐵)−1 the optimal weightmatrix. The formula
for �̂�𝜃𝜃 is the familiar Hessian with respect to 𝜃with𝜋 concentrated out.
Theorem 2 uses a self-normalizing matrix ̂𝛤𝜃, akin to dividing by the standard error to arrive at

a pivotal T-statistic in linear regression (e.g., Student, 1908), because different elements of ̂𝜃 can
converge at different rates and those rates depend on the data generating process. This is a feature
of the conformance property. We discuss this issue in greater detail and provide rates for individual
parameters across all cases in section 5.
Proof (theorem 2). The proof proceeds over five steps with supporting lemmas in app. B.2.
Step 1. Let �̂�⬩ = ̂ℒ⬩ + �̂�, so that �̂�(𝜃, 𝜋) = �̂�⬩(𝜃, 𝜋) + ̂ℒ◾(𝜋). Consider a quadratic expansion
of �̂�(𝜃, 𝜋, 𝛾) = �̂�⬩(𝜃, 𝜋) + ̂ℒ◾(𝛾). For generic 𝑣𝜃, 𝑣𝜋, let 𝑡 ∈ [0, 1] index a convex combination
between (𝜃 , 𝜋 , 𝑠) and (𝜃 + 𝑣𝜃, 𝜋 + 𝑣𝜋, 𝜋 + 𝑣𝜋) and define,
̂𝕗(𝑡) = �̂�[𝜃(𝑡), 𝜋(𝑡), 𝛾(𝑡)] = �̂�⬩(𝜃 + 𝑡𝑣𝜃, 𝜋 + 𝑡𝑣𝜋)− �̂�⬩(𝜃 , 𝜋 )+ ̂ℒ◾[𝜋 + 𝑡𝑣𝜋+(1− 𝑡)(𝑠−𝜋 )].

Thus, ̂𝕗(1) = �̂�⬩(𝜃 + 𝑣𝜃, 𝜋 + 𝑣𝜋) − �̂�⬩(𝜃 , 𝜋 ) + ̂ℒ◾(𝜋 + 𝑣𝜋) and ̂𝕗(0) = ̂ℒ◾(𝑠) = 0, ̂ℒ◾
𝜋(𝑠) = 0,

̂𝕗′(0) = (𝑣▿𝜃 �̂�
⬩
𝜃 + 𝑣▿𝜋�̂�⬩

𝜋)(𝜃 , 𝜋 ), and
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̂𝕗″(𝑡) = (𝑣▿𝜃 �̂�𝜃𝜃𝑣𝜃 + 2𝑣▿𝜋�̂�𝜋𝜃𝑣𝜃 + 𝑣▿𝜋�̂�⬩
𝜋𝜋𝑣𝜋)(𝜃 + 𝑡𝑣𝜃, 𝜋 + 𝑡𝑣𝜋)

+ [𝑣𝜋 − (𝑠 − 𝜋 )]▿ ̂ℒ◾
𝜋𝜋[𝜋 + 𝑡𝑣𝜋 + (1 − 𝑡)(𝑠 − 𝜋 )][𝑣𝜋 − (𝑠 − 𝜋 )].

Applying the MVT to 𝕗, for some ̊𝑡 ∈ [0, 1], ̂𝕗(1) = ̂𝕗(0) + ̂𝕗′(0) + ̂𝕗″( ̊𝑡) / 2 = ̂𝕗′(0) + ̂𝕗″( ̊𝑡) / 2.
Now substitute in 𝑣𝜃 = 𝛤𝜃ℎ𝜃 and 𝑣𝜋 = 𝛤𝜋ℎ𝜋 for symmetric matrices 𝛤𝜃, 𝛤𝜋 and vectors ℎ𝜃, ℎ𝜋 to
obtain

�̂�⬩(𝜃 + 𝛤𝜃ℎ𝜃, 𝜋 + 𝛤𝜋ℎ𝜋) + ̂ℒ◾(𝜋 + 𝛤𝜋ℎ𝜋) = (ℎ▿𝜃𝛤𝜃�̂�𝜃 + ℎ▿𝜋𝛤𝜋�̂�⬩
𝜋)(𝜃 , 𝜋 )

+ 1
2((ℎ

▿
𝜃𝛤𝜃�̂�𝜃𝜃𝛤𝜃ℎ𝜃 + 2𝛤𝜋ℎ

▿
𝜋�̂�𝜋𝜃𝛤𝜃ℎ𝜃 + ℎ▿𝜋𝛤𝜋�̂�⬩

𝜋𝜋𝛤𝜋ℎ𝜋)[𝜃( ̊𝑡), 𝜋( ̊𝑡)]

+ [𝛤𝜋ℎ𝜋 − (𝑠 − 𝜋 )]▿ ̂ℒ◾
𝜋𝜋[𝛾( ̊𝑡)][𝛤𝜋ℎ𝜋 − (𝑠 − 𝜋 )]). (16)

Based on this expansion the proof proceeds in the remaining three steps. Step 2 shows that the
final term of (16) is well approximatedwhenwe replace sample objects evaluated at (𝜃, 𝜋, 𝛾)( ̊𝑡)
with population objects evaluated at (𝜃 , 𝜋 , 𝜋 ), yielding (18). Step 3, minimizes (18) with
respect to ℎ to arrive at an asymptotic approximation of 𝛤−1𝜃 ( ̂𝜃 − 𝜃 ). Finally, step 4 applies a
central limit theorem to establish normality.

Step 2. Defining everything at the truth, let𝒜 ≔ plim𝑀→∞(𝐵
▿𝐵 / 𝑀),

𝛯𝜃 = plim
𝑀→∞

[𝔻▿
𝜃𝒫𝐵(𝐵

▿𝐵)−1] = plim
𝑀→∞

[
𝔻▿
𝜃𝐵
𝑀 𝒜−1(𝐵

▿𝒫𝐵
𝑀 )𝒜−1],

𝛯𝜋 = plim
𝑀→∞

(ℒ𝜃𝜋ℒ−1
𝜋𝜋𝔻

▿
𝜋𝒫𝐵(𝐵

▿𝐵)−1) = plim
𝑀→∞

[
ℒ𝜃𝜋ℒ−1

𝜋𝜋𝔻
▿
𝜋𝐵

𝑀 𝒜−1(𝐵
▿𝒫𝐵
𝑀 )𝒜−1],

and 𝛯 = 𝛯𝜃 − 𝛯𝜋. L6 shows that for 𝛤𝜃 = [𝔼(ℒ𝜃𝜃 − ℒ𝜃𝜋ℒ−1
𝜋𝜋ℒ𝜋𝜃) + 𝑀𝛯𝒜𝛯▿]−1/2 and 𝛤𝜋 =

{𝔼[ℒ𝜋𝜋 − ℒ𝜋𝜃ℒ+
𝜃𝜃ℒ𝜃𝜋]}

−1/2, the following hold for ‖𝐴‖ = sup𝑥:‖𝑥‖=1 ‖𝐴𝑥‖,

max
̊𝑡∈[0,1]

‖
‖𝛤𝜃{�̂�𝜃𝜃[𝜃( ̊𝑡), 𝜋( ̊𝑡)] − 𝛺𝜃𝜃}𝛤𝜃

‖
‖ ≺ 1, (17a)

max
̊𝑡∈[0,1]

‖
‖𝛤𝜃{�̂�𝜃𝜋[𝜃( ̊𝑡), 𝜋( ̊𝑡)] − 𝛺𝜃𝜋}𝛤𝜋

‖
‖ ≺ 1, (17b)

max
̊𝑡∈[0,1]

‖
‖𝛤𝜋{�̂�

⬩
𝜋𝜋[𝜃( ̊𝑡), 𝜋( ̊𝑡)] − 𝛺⬩

𝜋𝜋}𝛤𝜋‖‖ ≺ 1, (17c)

max
̊𝑡∈[0,1]

‖
‖𝛤𝜋{ ̂ℒ◾

𝜋𝜋[𝛾( ̊𝑡)] − ℒ◾
𝜋𝜋}𝛤𝜋‖‖ ≺ 1. (17d)

This allows us to replace all the hatted second derivatives in (16) with their population counter-
parts at the truth. This, with some algebraic manipulation, transforms the right-hand side of (16)
into (evaluating everything at the truth),
1
2(𝑠 − 𝜋 )▿ℒ◾

𝜋𝜋(𝑠 − 𝜋 ) + {ℎ▿𝜃𝛤𝜃�̂�𝜃 + ℎ▿𝜋𝛤𝜋[�̂�⬩
𝜋 − ℒ◾

𝜋𝜋(𝑠 − 𝜋 )]}+

1
2(ℎ

▿
𝜃𝛤𝜃𝛺𝜃𝜃𝛤𝜃ℎ𝜃 + 2ℎ▿𝜋𝛤𝜋𝛺𝜋𝜃𝛤𝜃ℎ𝜃 + ℎ▿𝜋𝛤𝜋𝛺𝜋𝜋𝛤𝜋ℎ𝜋). (18)

Step 3. Note that (18) is a quadratic in ℎ𝜃, ℎ𝜋. Thus, ℎ∗ = (ℎ∗𝜃, ℎ
∗
𝜋) ≃ [𝛤−1𝜃 ( ̂𝜃 − 𝜃 ), 𝛤−1𝜋 (�̂� − 𝜋 )]

is the solution to,

min
ℎ

{12(𝑠 − 𝜋 )▿ℒ◾
𝜋𝜋(𝑠 − 𝜋 ) + ℎ▿ [

𝛤𝜃�̂�𝜃

𝛤𝜋[�̂�⬩
𝜋 − ℒ◾

𝜋𝜋(𝑠 − 𝜋 )]
] + 1

2ℎ
▿ [

𝛤𝜃𝛺𝜃𝜃𝛤𝜃 𝛤𝜃𝛺𝜃𝜋𝛤𝜋
𝛤𝜋𝛺𝜋𝜃𝛤𝜃 𝛤𝜋𝛺𝜋𝜋𝛤𝜋

] ℎ} .

Applying the partitioned inverse formula,

𝛤−1𝜃 ( ̂𝜃 − 𝜃 ) ≃ −[𝛤𝜃(

=𝒬𝜃𝜃

⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞𝛺𝜃𝜃 −𝛺𝜃𝜋𝛺−1
𝜋𝜋𝛺𝜋𝜃)𝛤𝜃]

−1{𝛤𝜃[

≕ ̂𝓆𝜃
⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞�̂�𝜃 −𝛺𝜃𝜋𝛺−1

𝜋𝜋(�̂�⬩
𝜋 − ℒ◾

𝜋𝜋(𝑠 − 𝜋 )]}.
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We apply L7 to show that the denominator term 𝛤𝜃𝒬𝜃𝜃𝛤𝜃 converges to an identitymatrix. Then,
L8 shows that the numerator term 𝛤𝜃 ̂𝓆𝜃

𝑑
→ 𝑁(0, 𝒱 ̂𝜃).

Step 4. Finally, L6 implies that 𝛤2𝜃 ̂𝛤−2𝜃
𝑝
→ 𝕀.

Theorem2canbe extended to cover asymptotic normality of linear combinations of CLEERestimator
of (𝛽 , 𝜃 , 𝛿 ).
Lemma 1. For any conformablematrix𝛬 for which lim𝑀→∞(𝛬

▿𝛬) = 𝕀 andmatrices ℋ̂, 𝐴 presented
in app. J.1,

(𝛬▿ℋ̂−1𝛬)−1/2𝛬▿
⎡
⎢
⎢
⎣

̂𝛽 − 𝛽
̂𝜃 − 𝜃
̂𝛿 − 𝛿

⎤
⎥
⎥
⎦

≃ 𝐴▿
⎡
⎢
⎢
⎣

𝐵▿𝜉
̂ℒ𝜃
̂ℒ𝜋

⎤
⎥
⎥
⎦

𝑑
→𝒩(0, 𝕀).

The proof of L1 is similar to that of theorem 2with themainwrinkle being that we need to use the
delta method with the dimension of the argument increasing with𝑀: see app. J.1 for the proof. L1
makes inference on linear combinations of CLEER estimates straightforward.21

4.6 Choice of �̂�
Wenow return to the choice of weightmatrix. In defining the sample objective function in section 4.1,

we assumed �̂� = (𝐵▿𝐵)−1 which is convenient as it allows for straightforward analytical expressions
when profiling out 𝛽.
As noted, the choice of �̂� is (asymptotically) immaterial for the estimation of 𝜃 if asymptotics come

from the likelihood portion of the objective function. In other cases, it matters only for the asymptotic
variance of ̂𝜃, not for its consistency, provided that plim𝑀→∞(𝐽�̂�) is positive definite.
A choice for �̂� that ismade intuitive by the optimalweightmatrix discussion in theGMMliterature is

�̂� = (𝐵▿ ̂𝒱𝜉𝐵)−1, where ̂𝒱𝜉 is such that 𝐵
▿ ̂𝒱𝜉𝐵/𝐽

𝑝
→ 𝔼(𝜉2𝑗𝑚𝑏𝑗𝑚𝑏

▿
𝑗𝑚). For instance, for heteroskedasticity

robust inference, ̂𝒱𝜉 could be a diagonal matrix with elements ̂𝜉2𝑗𝑚, where ̂𝜉𝑗𝑚 is a residual from a first
step estimation and𝒱𝜉 amatrix with diagonal elements𝕍(𝜉𝑗𝑚 ∣ 𝑏𝑗𝑚). Such a two-step strategy can be
used to achieve efficiency in the sense of either section 5.2.1 or section 5.2.2 as detailed there.
Theorem 2 already allows for this possibility since in that theoremwe can redefine the instruments
̄𝐵 = 𝒱1/2

𝜉 𝐵, which results in the PLM term [𝛿(𝜃, 𝜋) − 𝑋𝛽]▿𝒱−1/2
𝜉 𝒫�̄�𝒱−1/2

𝜉 [𝛿(𝜃, 𝜋) − 𝑋𝛽]/2. With this
adjustment the proof will go through provided thematrix𝒱−1/2

𝜉 is explicitly incorporated throughout,
which is trivial in view of F[ii].

5 Conformance and Efficiency
5.1 Conformance
The intuition for conformance is most readily apparent by examining the Hessian of the population

objective function𝛺, introduced in section 4.1, evaluated at the truth,

𝐻𝛺 = 𝐻ℒ⬩ + 𝐻ℒ◾ + 𝐻𝛷 =
⎡
⎢
⎢
⎣

ℒ⬩
𝜃𝑧𝜃𝑧 ℒ⬩

𝜃𝑧𝜃𝜈 ℒ⬩
𝜃𝑧𝜋

ℒ⬩
𝜃𝜈𝜃𝑧 ℒ⬩

𝜃𝜈𝜃𝜈 ℒ⬩
𝜃𝜈𝜋

ℒ⬩
𝜋𝜃𝑧 ℒ⬩

𝜋𝜃𝜈 ℒ⬩
𝜋𝜋

⎤
⎥
⎥
⎦

+
⎡
⎢
⎢
⎣

0 0 0
0 0 0
0 0 ℒ◾

𝜋𝜋

⎤
⎥
⎥
⎦

+
⎡
⎢
⎢
⎣

𝛷𝜃𝑧𝜃𝑧 𝛷𝜃𝑧𝜃𝜈 𝛷𝜃𝑧𝜋

𝛷𝜃𝜈𝜃𝑧 𝛷𝜃𝜈𝜃𝜈 𝛷𝜃𝜈𝜋

𝛷𝜋𝜃𝑧 𝛷𝜋𝜃𝜈 𝛷𝜋𝜋

⎤
⎥
⎥
⎦

. (19)

Up to negligible terms, ̂𝛤2𝜃 defined in theorem 2 is the top left two-by-two block of 𝐻−1
𝛺 .

The entries of the block terms of (19) diverge at different rates. Moreover, any individual term can be
singular. Conformance obtains because CLEER is asymptotically normal and converges at the optimal

21In practice, if the weight matrix is chosen as is suggested in section 4.6, standard errors can be computed from the inverse
hessian of the objective function (5), otherwise the sandwich analog should be used.
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rate whenever the sum of the terms is invertible.
While themiddle term,𝐻ℒ◾, is not a function of 𝜃, it provides key identifying information on𝜋 . The

first and last terms of (19) correspond to the two sources of identification for 𝜃 discussed earlier: micro
data and product level moments.
Micro identification arises from 𝐻ℒ⬩. Under strong micro identification, 𝐻ℒ⬩ has full rank. As

discussed above, a failure of micro identification occurs when 𝜃 𝑧 = 0, a consequence of which is that
the red entries in𝐻ℒ⬩ are all 0 and𝐻ℒ⬩ + 𝐻ℒ◾ is singular. To see this, consider for ease of notation the
case where 𝜃𝜈 is a scalar and 𝑥𝜈𝑚 represents the product characteristic on which the random coefficient
appears. Then,

ℒ𝜃𝜈𝜃𝜈𝑚(𝜃 , 𝜋𝑚) = 𝔼(𝑥𝜈▿𝑚 (𝕎𝑖𝑚 −𝕎𝑚ℚ −1
𝑚 ℚ𝑖𝑚)𝕄 −1

𝑖𝑚 (𝕎𝑖𝑚 −𝕎𝑚ℚ −1
𝑚 ℚ𝑖𝑚)𝑥𝜈𝑚 || 𝔸),

where𝕄𝑖𝑚 = diag(�⃗�𝑖𝑚)−�⃗�𝑖𝑚�⃗�
▿

𝑖𝑚 ,ℚ𝑖𝑚 = ∫𝔄𝑖𝑚d𝐹𝜈,𝕎𝑖𝑚 = ∫𝔄𝑖𝑚𝜈d𝐹𝜈, with𝔄𝑖𝑚 = diag( ⃗𝓈𝑖𝑚)− ⃗𝓈𝑖𝑚 ⃗𝓈 ▿
𝑖𝑚

where �⃗�𝑖𝑚 = 𝜍𝑖⋅𝑚(𝜃 , 𝜋𝑚), ⃗𝓈𝑖𝑚 is a vectorwith elements𝓈𝑗𝑚(𝑧𝑖𝑚, 𝜈; 𝜃, 𝛿). Further,𝕎𝑚, ℚ𝑚 are𝕎𝑖𝑚, ℚ𝑖𝑚

integrated over demographic characteristics. When 𝜃 𝑧 = 0, �⃗�𝑖𝑚 = 𝜋𝑚. It follows that𝕎𝑚 = 𝕎𝑖𝑚,
ℚ𝑚 = ℚ𝑖𝑚 and hence ℒ𝜃𝜈𝜃𝜈𝑚(𝜃 , 𝜋𝑚) = 0 for all𝑚 and 𝐻ℒ⬩ + 𝐻ℒ◾ is singular, the red case in (19)
noted above. Weakmicro identification corresponds to the case where 𝜃 𝑧 is close to zero and hence
𝐻ℒ⬩ + 𝐻ℒ◾ is nearly singular.
Product identification arises from𝐻𝛷. As with conventional GMM, identification depends on the

number of instruments relative to the number of parameters to identify. Suppose the number of
instruments in 𝑏 is less than or equal to 𝑑𝛽. Then, 𝛷 and 𝐻𝛷 are both 0 and product moments do
not aid in identification of 𝜃 . Additional instruments provide identifying power, and if 𝑑𝑏 ≥ 𝑑𝛽 + 𝑑𝜃
then in principle all parameters can be estimated à la BLP95 (i.e., without relying on themicro sample).
However, as in BLP95, it is necessary to supplement 𝛷 with additional restrictions on 𝜋 to achieve
identification, since 𝑑𝜋 = 𝐽 ≫ 𝑑𝑏 for all practical purposes. Most of the literature accomplishes this
by constraining 𝜋 to match observed market shares 𝑠 following BLP95, introducing 𝐽market share
constraints. In CLEER, the additional restrictions come from ℒ◾, so product identification obtains
when𝐻ℒ◾+𝐻𝛷 is invertible. We further note that the instruments𝑏maybeweak, analogous to standard
weak identification in GMM (see Stock et al., 2002), resulting in𝐻ℒ◾ + 𝐻𝛷 being nearly singular.
CLEER’s asymptotics are driven by𝐻𝛺 = 𝐻ℒ⬩ + 𝐻ℒ◾ + 𝐻𝛷 rather than𝐻ℒ⬩ + 𝐻ℒ◾ or𝐻ℒ◾ + 𝐻𝛷

individually. The rates of convergence of the elements of CLEER can differ and will correspond to
the fastest rate of divergence among the three terms (entry by entry). In the best case, both micro
and product identification are strong, and these rates depend only on the number of observations
used to constructℒ⬩,ℒ◾

𝑚, and𝛷, which growwith the number of micro consumers 𝐼, themarket sizes
{𝑁𝑚}, and the number of markets,𝑀, respectively.22 In general, the convergence rates will also depend
on identification strength. The following subsection will focus on strong identification; we expand
our discussion to the general case allowing for weak identification strength (drifting) parameters in
section 5.1.2.
5.1.1 Strong identification. This section focuses on the casewhen themicro identification parameter
𝜆 = ‖𝜃 𝑧‖ > 0 is constant and we have 𝑑𝑏 ≥ 𝑑𝛽 + 𝑑𝜃 strong instruments. This is sufficient, but not

22As is standard for GMM,𝛷 is an inner product of moment vectors which are sums over all 𝐽 products. By F, 𝐽 increases at
rate𝑀, the number of markets.
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necessary for strong identification.23

Case ̂𝜃 �̂�𝑚 ̂𝛿𝑚 ̂𝛽

𝑀 ⪯ 𝐼 ⪯ 𝑁𝑚 √𝐼 √𝑁𝑚 √𝐼 √𝑀
𝑀 ⪯ 𝑁𝑚 ⪯ 𝐼 √𝐼 √𝑁𝑚 √𝑁𝑚 √𝑀
𝐼 ⪯ 𝑀 ⪯ 𝑁𝑚 √𝑀 √𝑁𝑚 √𝑀 √𝑀
𝐼 ⪯ 𝑁𝑚 ⪯ 𝑀 √𝑀 √𝑁𝑚 √𝑁𝑚 √𝑀
𝑁𝑚 ⪯ 𝑀 ⪯ 𝐼 √𝐼 √𝑁𝑚 √𝑁𝑚 √𝑀
𝑁𝑚 ⪯ 𝐼 ⪯ 𝑀 √𝑀 √𝑁𝑚 √𝑁𝑚 √𝑀

(a) Convergence rates under strong identification

Parameter Rate

̂𝜃𝑧 max(√𝐼,√𝑀𝜙2𝜃)
̂𝜃𝜈 second fastest of

√𝐼,√𝐼𝜆2,√𝑀𝜙2𝜈,√𝑀𝜙2𝜃
�̂�𝑚 √𝑁𝑚
̂𝛿𝑚 min(√𝑁𝑚, rate of ̂𝜃𝜈)
̂𝛽 min(√𝑀𝜙2𝛽, rate of ̂𝜃𝜈)

(b) General convergence rates

Table 1:Convergence rates comparison

Tbl. 1a displays the convergence rates of each component of CLEER under all relative rates of
divergence of𝑀 (the number of markets), 𝐼 (themicro sample size), and𝑁𝑚 (themarket population).
Because of strong identification, ̂𝜃𝑧 and ̂𝜃𝜈 diverge at the same rate across all cases. The rate is the faster
of√𝐼 and√𝑀, which correspond to (the square root of the) rates of divergence of ̂ℒ⬩ and �̂� respectively;
the term that diverges at the slower rate is asymptotically negligible. Choice probabilities, �̂�𝑚, always
converge at a√𝑁𝑚 rate as it can be estimated off ̂ℒ◾

𝑚 which diverges at rate𝑁𝑚. Whilemicro datamay
improve efficiency of �̂�𝑚, it does not improve the rate as𝜋𝑚 is market specific. ̂𝛿𝑚 can be estimated
from ̂𝜃 and �̂�𝑚 via the deltamethod. Therefore, it converges at the slower rate of these two estimators.
̂𝛽 always converges at the rate√𝑀; it cannot converge faster than the infeasible IV estimator which

treats 𝛿 as known. Although ̂𝛿𝑚may converge at rate slower than√𝑀 (i.e., rows 4 through 6 of tbl. 1a),
̂𝛽maintains the√𝑀 rate as it depends on a (weighted) average of the �̂�𝑚’s, thereby reducing its variance.

5.1.2 The general case. Theconvergence rates of CLEERelements in thegeneral case are summarized
in tbl. 1b. In general, weak identification or failure of identificationmay arise from either themicro
sample or the PLMs. CLEER natively conforms to the identifying power in the data without pre-testing,
which is important for applied work. Recall that weakness of micro identification is parameterized by 𝜆
drifting towards zero. For the PLMs, we consider three concentration parameters: one for 𝛽 , one for
(𝜃 𝜈, 𝛽 ), and one for (𝜃 , 𝛽 ).24 There are three because havingmore parameters to identify requires
more and strongermoments. We denote the smallest eigenvalue of each concentration parameter as
𝑀𝜙2𝛽,𝑀𝜙2𝜈, and𝑀𝜙2𝜃, respectively.
The convergence rate of �̂�𝑚 is unaffected compared to section 5.1.1. Turning to ̂𝜃, we see that in

general the rates of ̂𝜃𝑧 and ̂𝜃𝜈 can differ. ̂𝜃𝑧 converges weakly faster than ̂𝜃𝜈. When CLEER estimates
𝜃 𝑧 off ̂ℒ⬩, it uses themicro data and effectively takes deviations from ‘averages,’ and hence the rate of
̂𝜃𝑧 cannot be slower than√𝐼. However, the convergence rate of ̂𝜃𝑧 cannot be slower than√𝑀𝜙2𝜃, either,

since with sufficientlymany strongmoments, CLEER estimates 𝜃 𝑧 off the PLMs.
Now ̂𝜃𝜈. Note that 𝐼 ⪰ 𝐼𝜆2 and𝑀𝜙2𝜈 ⪰ 𝑀𝜙2𝜃 bydefinition. Anyof the rates for ̂𝜃𝜈 in tbl. 1bcanbesecond

23Strong identification may also be obtained with only 𝑑𝑏 ≥ 𝑑𝛽 + 𝑑𝜃𝜈 strong instruments if 𝐼 grows sufficiently fast. This
case will be covered in section 5.1.2.

24A concentration parameter is a “measure of the strength of the instruments” (Stock et al., 2002). In our context, the
concentration parameters are (up to immaterial constants) 𝔼(𝐴▿ ∣ 𝑍)𝑍𝑍▿𝔼(𝐴 ∣ 𝑍) for 𝐴 = 𝑋, 𝐴 = [𝑋 𝔻𝜃𝜈], and
𝐴 = [𝑋 𝔻𝜃𝜈 𝔻𝜃𝑧], respectively.
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fastest:25 (1) The rate√𝐼𝜆2 obtains if themicro data contain sufficient identifying information for the
random coefficients tomake the PLMs redundant for the estimation of 𝜃 , i.e. if 𝐼 ⪰ 𝐼𝜆2 ⪰ 𝑀𝜙2𝜈 ⪰ 𝑀𝜙2𝜃.
(2)We get the rate√𝑀𝜙2𝜈 if 𝐼 ⪰ 𝑀𝜙2𝜈 ⪰ 𝐼𝜆2+𝑀𝜙2𝜃 because 𝜃

𝑧 is then (asymptotically) estimated off the
micro data only, and 𝜃 𝜈 off the PLMs. (3)Third, the rate is√𝐼 if𝑀𝜙2𝜈 ⪰ 𝐼 ⪰ 𝑀𝜙2𝜃+𝐼𝜆

2 because both 𝜃 𝑧

and 𝜃 𝜈 can then be estimated using a combination of micro data and product level moments, with the
convergence rate noworse than the slower of the two. (4) Finally,we get√𝑀𝜙2𝜃 if𝑀𝜙2𝜈 ⪰ 𝑀𝜙2𝜃 ⪰ 𝐼 ⪰ 𝐼𝜆2

because the estimator then only uses the PLMs to estimate 𝜃 . Since it needsmore of them, the smaller
concentration parameter applies.
In section 5.1.1, we noted that the convergence rate for ̂𝛿𝑚 depends on the rates of ̂𝜃 and �̂�𝑚. Because

in the general case ̂𝜃𝜈 can convergemore slowly than ̂𝜃𝑧, the rate is now the slower of that of ̂𝜃𝜈 and �̂�𝑚.
Although ̂𝛽 depends on both ̂𝜃 and {�̂�𝑚}, its convergence rate is the slower of √𝑀 and the convergence
rate of ̂𝜃𝜈 because it depends on a (weighted) average of the �̂�𝑚’s, thereby reducing its asymptotic
variance.
5.2 Efficiency
Conformance establishes that CLEER converges at the optimal rate under general conditions. To be

efficient, CLEERmust further achieve the smallest possible variance at that rate. If the likelihood is the
dominant term in the objective function then efficiency of ̂𝜃 follows directly frommaximum likelihood
principles. Only if the PLMs contribute, i.e. if𝑀𝜙2𝑣 ⪰ 𝐼𝜆2, does the choice of instruments matter for
efficiency of ̂𝜃. Moment condition estimators typically operate under two distinct notions of efficiency
based on the form of moment conditions. We cover both in the following two subsections.
5.2.1 Unconditional moment restrictions. In this section, we discuss efficiency for a given
instrument vector𝑏𝑗𝑚. Since this notion of efficiency considers only unconditionalmoment restrictions,
we relax F[ii] as follows,
Assumption J (Products: Unconditional Moments). Product characteristics and instruments in a
market (𝑥𝑗𝑚, 𝜉𝑗𝑚, 𝑏𝑗𝑚) are independent across 𝑗, satisfy 𝔼(𝑏𝑗𝑚𝜉𝑗𝑚) = 0.
With this assumption, CLEER achieves efficiency when the standard optimal weightmatrix from

GMM is used for �̂�, i.e. �̂� is chosen as suggested in section 4.6. To see this, it is convenient to first
consider the gradient of the CLEER objective function (5),26

⎡
⎢
⎢
⎣

𝜕𝛽�̂�
▿�̂��̂�

−𝜕𝜃 log �̂�
−𝜕𝛿 log �̂� + 𝜕𝛿�̂�

▿�̂��̂�

⎤
⎥
⎥
⎦

. (20)

We first show asymptotic equivalence of a GMMestimator using this gradient to the GMMestimator
defined as

argmin
𝛽,𝜃,𝛿

1
2 [�̂�

▿ 𝜕𝜓▿ log �̂�] [
�̂� 0
0 �̂�𝐿

] [
�̂�

𝜕𝜓 log �̂�
] , (21)

where 𝜓 = [𝜃▿, 𝛿▿]▿ and �̂�𝐿 = (−𝜕𝜓𝜓▿ log �̂�)
−1 evaluated at the solution ̂𝜓 of (5).27 Note that in (21)

theremay bemoremoments than parameters. Specifically, (20) has 𝑑𝛽 + 𝑑𝜃 + 𝑑𝛿moments, whereas

25For the sake of ranking, ties are kept, e.g. if 𝜆 = 1 and 𝐼 ≻ 𝑀 then the second-fastest rate is√𝐼𝜆2 = √𝐼.
26While the majority of this section makes use of the objective function described in section 4.1, which is convenient for
theoretical reasons, here we use (5) because 𝛿 , not 𝜋 is a parameter of interest; the substantive argument is equivalent
since 𝛿 = 𝛿(𝜃,𝜋) is invertible in 𝜋.

27We define �̂�𝐿 in terms of (5) in case its gradient (20) is zero at multiple points. Despite their asymptotic equivalence,
there are two reasons to prefer CLEER to the GMM estimators described in (20) and (21). as we detail in section 6.1.
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(21) is based on 𝑑𝑏 + 𝑑𝜃 + 𝑑𝛿moments. Under exact identification of (21), i.e. if 𝑑𝑏 = 𝑑𝛽, both (20)
and (21) are equal to zero if �̂� = 0, 𝜕𝜃 log �̂� = 0, and 𝜕𝛿 log �̂� = 0. In the case of overidentification, the
gradient of the objective function in (21) is

⎡
⎢
⎢
⎣

𝜕𝛽�̂�
▿�̂��̂�
0𝑑𝜃

𝜕𝛿�̂�
▿�̂��̂�

⎤
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

0𝑑𝛽
𝜕𝜃𝜓▿ log �̂��̂�𝐿𝜕𝜓 log �̂�
𝜕𝛿𝜓▿ log �̂��̂�𝐿𝜕𝜓 log �̂�

⎤
⎥
⎥
⎥
⎦

, (22)

which yields (20) at the solution since �̂�𝐿 = (−𝜕𝜓𝜓▿ log �̂�)
−1, establishing the equivalence of these

estimators.
The remainder of this subsection establishes that (21) is efficient whenweweaken F[ii] to J. First, by

the law of iterated expectations, at the truth, the off-diagonal blocks are zero, because

𝔼(𝜕𝜓 log �̂� �̂�
▿) = 𝔼(𝔼(𝜕𝜓 log �̂� || 𝑥, 𝜉) �̂�

▿) = 0,

where the second equality follows from the the likelihood principle applied to the choice problem
(without PLMs).28 The intuition for this result follows from the fact the inner expectation is over the
consumer level variables 𝑧, 𝑦, whereas 𝑧, 𝑦 do not enter the PLMs. Moreover,−�̂�𝐿 is the scaled inverse
informationmatrix of the choice problemandwe assumed �̂� is the appropriately scaled optimalweight
matrix of the PLMs. Therefore, this choice of weightmatrix is optimal (when replacing F[ii] with J).
5.2.2 Optimal instruments. If the PLMs do not contribute asymptotically to the estimation of 𝜃 ,
then CLEER ̂𝜃 is fully efficient independent of the choice of weightmatrix or instruments. Efficiency
of ̂𝛽will require the use of optimal instruments, as it always relies on PLMs. If the PLMs contribute
asymptotically to the estimation of 𝜃 29 then full efficiency requires the use of optimal instruments
to fully exploit the conditionalmoment restrictions F[ii] (Chamberlain, 1987, C87).30 As always, the
optimal instruments would have to be estimated.
A novelty of CLEER is that such instrumentsmust incorporate both the score and the Hessian of the

loglikelihood, specifically,

𝐵opt𝑚 = 𝒱−1
𝜉𝑚𝔼([𝔻𝜃𝑚 − 𝔻𝜋𝑚ℒ −1

𝜋𝜋𝑚ℒ𝜋𝜃𝑚 −𝑋𝑚]
|
|
|
𝐵𝑚), (23)

where (as defined in section 4.3)𝔻𝜃𝑚 = 𝜕𝜃▿𝛿𝑚,𝔻𝜋𝑚 = 𝜕𝜋▿𝑚𝛿𝑚, and𝒱𝜉𝑚 = 𝕍(𝜉𝑚 ∣ 𝐵𝑚).
In app. D we show that CLEER using these instruments and �̂� = (𝐵opt▿𝒱𝜉𝐵opt)−1 achieves the

semiparametric efficiency bound for (𝜃 , 𝛽 ). This can be implemented following section 4.6, such that
�̂� is compatible with theorems 1 and 2.31

28Note that the expectation of the score of log �̂� given 𝑥, 𝜉 is for 𝛾 = [𝛽▿, 𝜃▿, 𝛿▿]▿ under random sampling equal to

𝔼(
𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚

𝐽𝑚
∑
𝑗=0

𝑌𝑖𝑗𝑚

𝜍𝑧𝑖𝑚𝑗𝑚
𝜕𝛾𝜍

𝑧𝑖𝑚
𝑗𝑚 +

𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

(1 − 𝐷𝑖𝑚)
𝐽𝑚
∑
𝑗=0

(1 − 𝐷𝑖𝑚)
𝑌𝑖𝑗𝑚
𝜍𝑗𝑚

𝜕𝛾𝜍𝑗𝑚
||||
𝑥, 𝜉) =

𝔼(
𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚𝜕𝛾
𝐽𝑚
∑
𝑗=0

𝜍𝑧𝑖𝑚𝑗𝑚
⏟⎵⏟⎵⏟

=1

+
𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

(1 − 𝐷𝑖𝑚)𝜕𝛾
𝐽𝑚
∑
𝑗=0

𝜍𝑗𝑚
⏟⎵⏟⎵⏟

=1

||||
𝑥, 𝜉) = 0.

29Under strong identification this would occur if𝑀 ⪰ 𝐼.
30As always, going from conditional to unconditional moment restrictions can result in a loss of identification. Optimal
instruments use the local curvature of the objective function at the truth. Away from the truth, they only enforce the
restriction 𝔼[𝑔(𝑏)𝑎] = 0 for one function 𝑔, which does not imply 𝔼(𝑎|𝑏) = 0 globally, which would be equivalent to
𝔼[𝑔(𝑏)𝑎] = 0 for all functions 𝑔.

31Unlike in the standard case, where the choice of a weight matrix is immaterial as optimal instruments provide exact
identification, CLEER must use the optimal weight matrix (∑𝑚𝐵opt▿

𝑚 𝒱𝜉𝑚𝐵
opt
𝑚 )−1 to achieve the proper weighting of
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6 Comparison with Alternative Estimators
To clarify the contribution of CLEER, we now relate it to other estimators used in the discrete choice

literature.
First, as noted above, with 𝐼 = 𝑁, log �̂� simplifies to themixed logit loglikelihood. If 𝐼 < 𝑁, the only

difference is that log �̂� exploits the market share data via the macro term. This is particularly useful
when𝑀 is large relative to 𝐼, since then there would otherwise be an incidental parameters problem in
estimating 𝛿. More generally,market share data can dramatically improve the precision of the estimator,
as illustrated in fig. 3 of Grieco et al. (2023b).
The other major class of estimators used in applied work consists of share constrained GMM

estimators (e.g., BLP04; Petrin 2002; Grieco et al. 2023a).32 The remainder of this section shows how
CLEER can be converted intomembers of this class of estimators. There are four basic steps: using the
score of CLEER to construct an asymptotically equivalent GMM estimator (section 6.1); restricting 𝛿 as
a function of 𝜃 to enforce the constraint 𝑠 = 𝜎(𝜃, 𝛿) (section 6.2); replacing non-linearmoments relating
to the derivatives of log𝐿with approximations that can be simulated without bias (section 6.3); and
integratingmoments over 𝑧 to arrive atmoment restrictions that can be employedwithout access to
the underlyingmicro data (section 6.4). We provide a schematic figure of these steps in app. E.1. Since
CLEER is conformant and efficient, wewill point out losses of conformance and efficiency along the
way. There may be a trade-off between efficiency and computational tractability that justifies using
an inefficient estimator. We discuss these trade-offs. One should keep in mind that computational
resources tends to be less costly than data. We argue for the computational tractability of CLEER in
app. G.
6.1 Step 1: A GMM version of our estimator
In section5.2,wepresentedaGMMestimator (21)which is asymptotically equivalent toour estimator,

assuming that (21) does not lose identification; as we pointed out in section 5.2. Going fromminimizing
the objective function (5) to setting its derivatives to zero can lose identification due to the existence of
multiple (local) optima.
For equivalence to obtain, it is essential that the �̂�𝐿 and �̂�matrices used in (21) have the norming

indicated in section 5.2: unlike in standard GMM the convergence rate of the GMMestimator can be
affected by a poor choice of weightmatrix. The reason for this is that one set of moments entails a sum
over consumers whereas the other is a sum over products.
GMM estimators are often used to avoid parametric distributional assumptions, however this

rationale does not apply in this case. Indeed, GMM estimators discussed in this paper also use
the distributional assumptions on 𝜈, 𝜀 for the moments, and ̂𝜒 in (5) similarly avoids distributional
assumptions on 𝜉.
This GMM estimator has an important computational disadvantage: moving from the likelihood to a

quadratic function of the score as the objective function replaces the computational tractability of the
logit kernel in themixed logit objective with an amore complicated loss functionwith respect to the
underlying parameters, especially the high-dimensional 𝛿. In practice, this increases the occurrence of

likelihood and GMM terms.
32An alternative class of share constrained micro likelihood estimators (e.g., Goolsbee and Petrin, 2004; Chintagunta and
Dube, 2005; Train and Winston, 2007; Bachmann et al., 2019) also derives from our estimator by only imposing share
constraints on our estimator without recasting it as a GMM problem as described by the dotted line in Fig. 10.
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local optima and saddle points of the objective function, making the estimator difficult to compute and
verify. In fact, the next step is driven by addressing the computational complexity introduced here.
6.2 Step 2: Imposing share constraints
To resolve the dimensionality issue in (21) one can impose share constraints, �̂� = 𝑠.33 Following

the intuition of Berry (1994), this means one can effectively replace the unknown 𝜋 with data and
consequently treat 𝛿(𝜃, 𝜋 ) as a known function of 𝜃. Doing this allows one to replace optimization
over 𝛿with computing a fixed point of a contractionmapping to enforce the share constraints.34

Three issues arise when imposing the share constraints. First, because it is a one to onemapping on
the interior of the probability simplex, doing so rules out the presence of zero observed shares. Second,
imposing the share constraints introduces a potential loss of efficiency. Third, andmost importantly,
assuming 𝑠 = 𝜋 will invalidate standard inference unless the total number of consumers in allmarkets
is negligible compared to the square root of the population in the smallest market. We provide a full
discussion of these issues in app. E.2.
6.3 Step 3: Adjustments to Likelihood-based Moments
Onemotivation for using a GMM estimator is to apply themethod of simulatedmoments (MSM)

rather than simulatedmaximum likelihood. With theMSM, the simulatedmoments havemean zero
at the truth, regardless of the number of simulation draws. Consequently, as Pakes and Pollard (1989,
PP89) andMcFadden (1989) have shown, theMSMestimator has amean zero normal limit distribution
whose convergence rate is the square root of the slower of the total number of draws and the number of
observations. For example, if the number of draws per observationwere fixed then the total number
of draws grows proportionally to the number of observations and the convergence rate is the square
root of the number of observations, albeit that the asymptotic variance would then be greater. However,
the derivatives of the simulated log �̂� do not havemean zero at the truth since they are nonlinear in the
simulated integrals. Step 3 replaces the score of the likelihoodwith approximations that are able to take
advantage of the linearity property. This results in a loss of efficiency in return for less computational
cost for a given level of numerical (as opposed to statistical) accuracy.
We can focus on themicro score because themacro score in (7) is equal to zero if observed shares

are equal to choice probabilities, whichwe imposed in section 6.2. We can ignore the double counting
discrepancy in themicro score between (7) and (8) because themicro score hasmean zero in both cases.
So wewill work with themicro score in (8).
6.3.1 Approximation of 𝜃𝑧 moments for linear simulation error. We first consider themicro
score of (8) with respect to 𝜃𝑧(𝑘,𝑑), i.e.

𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚
∑
𝑗=0

𝐷𝑖𝑚𝑦𝑖𝑗𝑚
𝜎𝑧𝑖𝑚𝑗𝑚

∫𝓈𝑗𝑚(𝑧𝑖𝑚, 𝜈)(𝑥𝑘𝑗𝑚𝑧
𝑑
𝑖𝑚 −

𝐽𝑚
∑
𝑘=1

𝑥𝑘𝑘𝑚𝑧
𝑑
𝑖𝑚𝓈𝑘𝑚(𝑧𝑖𝑚, 𝜈))d𝐹(𝜈), (24)

which is a ratio of two integrals due to the presence of 𝜎𝑧𝑖𝑗𝑚 in the denominator. A commonly used
approximation to the score can be found by setting 𝜈 = 0 selectively as follows: Continuing from (24),

≈
𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚
∑
𝑗=0

𝐷𝑖𝑚𝑦𝑖𝑗𝑚
∫𝓈𝑗𝑚(𝑧𝑖𝑚, 0)(𝑥𝑘𝑗𝑚𝑧

𝑑
𝑖𝑚 −∑𝐽𝑚

𝑘=1 𝑥
𝑘
𝑘𝑚𝑧

𝑑
𝑖𝑚𝓈𝑘𝑚(𝑧𝑖𝑚, 𝜈))d𝐹(𝜈)

∫ 𝓈𝑗𝑚(𝑧𝑖𝑚, 0)d𝐹(𝜈)

33Share constraints can also be imposed on log �̂� directly, see fn. 32.
34The underlying estimator is the same whether this mapping computed in the inner loop a nested fixed point (BLP95) or
jointly when computing the estimator as in MPEC (Dubé et al., 2012), so this distinction is unrelated to our discussion.
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=
𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚(
𝐽𝑚
∑
𝑗=0

𝑦𝑖𝑗𝑚𝑥𝑘𝑗𝑚𝑧
𝑑
𝑖𝑚 −

𝐽𝑚
∑
𝑘=1

𝑥𝑘𝑘𝑚𝑧
𝑑
𝑖𝑚𝜎

𝑧𝑖𝑚
𝑘𝑚

𝐽𝑚
∑
𝑗=0

𝑦𝑖𝑗𝑚
⏟⎵⏟⎵⏟

=1

)

=
𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚
∑
𝑗=0

𝐷𝑖𝑚(𝑦𝑖𝑗𝑚 − 𝜎𝑧𝑖𝑚𝑗𝑚 )𝑥𝑘𝑗𝑚𝑧
𝑑
𝑖𝑚, (25)

where the final equality follows because we can reindex the final summation and 𝑥𝑘0𝑚 = 0 by definition.
The final line of (25) matches the correlation of demographics and product characteristics in the

micro sample to that of themodel. This moment is commonly used in applied work, see CG23 for a list
of examples.35 A convenient feature of this moment is that it is linear in 𝜎𝑧𝑖𝑚𝑗𝑚 , its only approximated
object, so it can be approximatedwithout simulation bias if one usesMonte Carlo integration. However,
since the share inversion is a nonlinear transformation of a simulated object, the number of simulation
draws required in the computation of 𝛿(𝜃, 𝑠), which is an argument to 𝓈𝑗𝑚, must diverge faster than 𝐼 to
avoid affecting efficiency and necessitating a different inference procedure,36 and at at least the same
rate as 𝐼 in order not to affect the convergence rate.
6.3.2 Handling 𝜃𝜈 moments. Themicro score of (8) with respect to 𝜃𝜈(𝑘) is similar to (24), replacing
𝑧𝑑𝑖𝑚 with 𝜈𝑘 in the integrand, i.e.

𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚
∑
𝑗=0

𝐷𝑖𝑚
𝑦𝑖𝑗𝑚
𝜎𝑧𝑖𝑚𝑗𝑚

∫𝓈𝑗𝑚(𝑧𝑖𝑚, 𝜈)(𝑥𝑘𝑗𝑚𝜈𝑘 −
𝐽𝑚
∑
𝑘=1

𝑥𝑘𝑘𝑚𝜈𝑘𝓈𝑘𝑚(𝑧𝑖𝑚, 𝜈))d𝐹(𝜈), (26)

However, the above used approximation is not useful since the integral would simplify to zero.
There are at least three ways of dealing with this issue. Themost common in the applied work is to

simply drop the score with respect to 𝜃𝜈 and rely on PLMs for identification. As discussed above, doing
somay slow the rate of convergence of ̂𝜃𝜈 from√𝐼 to√𝑀.
A second alternative employed by e.g. Berry et al. (2004a) and Grieco et al. (2023a) is introducing

second choice data based on surveys of consumer purchases to construct alternativemoments. CLEER
could accommodate second choice data efficiently by including it directly in the likelihood. There are,
however, two potential issues with second choice data. First, surveys rely on consumer responses rather
than revealed preference and can be sensitive to selection issues due to low response rates. Perhaps
more importantly, such data is often prohibitively costly to obtain. If such data were available, it could
easily be exploited by an extension of our estimator employing an exploded logit (Allison andChristakis,
1994). However, analysis of this estimator is outside the scope of our paper.
While we are unaware of its use in the literature, there is a third possibility that utilizes two

independent 𝜈 draws per simulation 𝑟. While not efficient, such an estimator would be conformant and
avoid simulation bias. We descibe this estimator in app. E.3.
6.4 Step 4: Population statistics instead of micro data
Onemay further alter themoment described in section 6.3.1 by integrating (25) over 𝑧,

𝑀
∑
𝑚=1

𝐽𝑚
∑
𝑗=0

( 1𝐼𝑚

𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚𝑦𝑖𝑗𝑚𝑥𝑘𝑗𝑚𝑧
𝑑
𝑖𝑚 −∫𝜎𝑧𝑗𝑚𝑥

𝑘
𝑗𝑚𝑧𝑑d𝐺(𝑧)). (27)

This is themoment described in BLP04, eq. 8, and Gandhi andNevo (2021, eq. 4.4).

35Discretizing either 𝑧𝑖𝑚 or 𝑥𝑗𝑚 will lead to two other popular classes of moments discussed by CG23 namely 𝔼[𝑧𝑖𝑚|𝑗 ∈
𝕁(𝑥𝑗𝑚)] or 𝔼[𝑥𝑗𝑚|𝑖 ∈ 𝕀(𝑧𝑖𝑚)] for some sets of products or consumers defined by their characteristics or demographics.
The discretization may impose a further loss of information. Note that applied work often conditions these moments on
making an inside purchase; alternatively, one could define 𝑥0𝑚 = 0 and use an unconditional moment.

36Otherwise, there would be an extra term in the moment due to the error in simulating 𝛿, i.e. there would be one term with
𝛿 and one expansion term involving the difference between simulated and actual values of 𝛿.
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There are two possiblemotivations using (27) over (25). The stronger is that it is less data intensive
in that it may be computed using only statistics of themicro data. For example, Sweeting (2013) uses
data from a survey conducted by a third party that reports averages at themarket-demographic level
which correspond to theminuend in (27). The subtrahend in (27) does not involve a sum over observed
consumers. Therefore, (27) can be appliedwithout direct access to themicro data. There is also aweaker
motivation in terms of relaxing computational effort: Since (27) targets a population statistic, it can be
approximated by an integral over the choice probabilities without simulating individual (for each 𝑖 in a
micro sample) objects. However, in view of PP89, the total number of simulation draws needed is the
same in both cases. To simulate (25), we need only a finite number of simulation draws per consumer
in order not to affect the convergence rate, as long as all draws are independent, whereas for (27) one
needs a number of independent draws that is at least proportional to 𝐼.
Using (27) over (25) has an additional efficiency cost. In particular, (27) does not exploit the consumer

level data in the second term because it does not condition on 𝑧𝑖. It is straightforward to show that the
variance of (27) weakly greater than (25). For ease of notation, consider the singlemarket case with 𝑥, 𝑧
both scalars and let𝜔𝑖 = ∑𝐽

𝑗=0𝐷𝑖𝑥𝑗𝑦𝑖𝑗𝑧𝑖. Themoments in (25) and (27) (if evaluated at the truth) have
the same Jacobian in expectation. The variance contribution for observation 𝑖 using (27) equals

𝕍{𝜔𝑖 − 𝔼(𝜔𝑖 | 𝐷𝑖, 𝑋)} = 𝔼𝕍(𝜔𝑖 | 𝐷𝑖, 𝑋) = 𝔼𝕍(𝜔𝑖 | 𝑧𝑖, 𝐷𝑖, 𝑋) + 𝔼𝕍{𝔼(𝜔𝑖 | 𝑧𝑖, 𝐷𝑖, 𝑋) || 𝐷𝑖, 𝑋}

≥ 𝔼𝕍(𝜔𝑖 | 𝑧𝑖, 𝐷𝑖, 𝑋) = 𝕍{𝜔𝑖 − 𝔼(𝜔𝑖 | 𝑧𝑖, 𝐷𝑖, 𝑋)},

which is the variance contribution of observation 𝑖 in (25). These two facts combinedwith the sandwich
formula for the asymptotic variance of the GMMestimator imply that using (25) dominates (27).

7 Monte Carlo Experiments
This section presentsMonte Carlo simulations across a number of different settings to investigate the

performance of CLEER and illustrate the practical importance of conformance in applied work. To do
so, we compare CLEERwith two non-conformant estimators: First, we consider an estimator that uses
product-level information but does not fully incorporate the information in themicro data. Specifically,
we use the GMM estimator described in section 6, which enforces the share constraint (section 6.2),
dropsmoments relating to the score of log𝐿with respect to 𝜃𝜈 (section 6.3.2) and utilizes the correlation
micromoment (27) to approximate the score of 𝜃𝑧 (section 6.4). Wewill refer to this estimator as “GMM
MicroMoments,” or simply as GMM-M.37 Second, we consider theMDLE introduced in section 3.1.
This estimator underutilizes product level exogeneity restrictions. Recall that MDLE is a two-step
estimator that first estimates (𝜃 , 𝛿 ) by minimizing − log �̂�, and then estimates 𝛽 by minimizing
̂𝜒(𝛽, ̂𝛿). Thus, product level moment restrictions are not used in the estimation of 𝜃 . As we detail

below, we use the same instruments to specify ̂𝜒 in all three estimators.
We compare these three estimators’ performance as we vary the following aspects of the data

generating process (DGP): (a) The size of micro data sample available, which impacts the amount
of micro information available; (b) The number of markets (and hence products) in the data, which
affects the amount of product information available; (c) The underlying 𝜃 parameters; themagnitude
of 𝜃 𝑧 directly influences the strength of micro information and themagnitude of 𝜃 𝜈 the strength of
the PLMs; (d) The strength of the product level instrument for an endogenous characteristic, which
impacts the strength of PLMs, but has no effect on the amount of micro information.

37We implement GMM-M using the pyblp package, version 1.1.0 (Conlon and Gortmaker, 2020, 2023).
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To summarize, varying these settings affects the relative power of themicro observations and product
level exclusion restrictions for estimation of the random coefficients 𝜃 𝜈, which affects the precision of
all parameters of themodel. Throughout, wewill compare CLEER, which efficiently utilizes both these
sources of identification, with the two estimators that emphasize only one. Finally, since likelihood
estimators can suffer from numerical bias, we perform a final comparison of CLEER and GMM-M
when 𝜃 𝜈 is large and this bias is likely to bemost severe.
7.1 Monte Carlo Design
This section provides an abbreviated summary of our Monte Carlo design. See app. H for a

comprehensive overview of the design and implementation details.
Our data generating process (DGP) includes two observable product characteristics (𝑥1𝑗𝑚, 𝑥2𝑗𝑚); two

demographic characteristics (𝑧1𝑖𝑚, 𝑧2𝑖𝑚). Mean product quality is specified as 𝛿𝑗𝑚 = 𝛽𝑐 + 𝛽1 𝑥1𝑗𝑚 +
𝛽2 𝑥2𝑗𝑚 + 𝜉𝑗𝑚, The unobservable product characteristic 𝜉𝑗𝑚 is also distributed as a standard normal
independent across 𝑗 and 𝑚. One of the observable product characteristics, 𝑥1, is correlated with
unobserved characteristic 𝜉𝑗𝑚, and thus endogenous; the strength of the instrument is governed by
the design parameter 𝑎. (See app. H.1 for the precise specification). The remaining characteristic 𝑥2 is
exogenous. Consumers have observed (if in themicro sample) characteristics, 𝑧𝑖𝑚 = (𝑧1𝑖𝑚, 𝑧2𝑖𝑚) and
unobservedcharacteristics𝜈𝑖𝑚 = (𝜈1𝑖𝑚, 𝜈2𝑖𝑚)whichare independentanddrawnfromthe standardnormal
distribution. Preference heterogeneity is parameterized according to 𝜇𝑧𝑖𝑚𝑗𝑚 = 𝜃 𝑧

1 𝑧1𝑖𝑚𝑥1𝑗𝑚 + 𝜃 𝑧
2 𝑧2𝑖𝑚𝑥2𝑗𝑚,

and 𝜇𝜈𝑖𝑚𝑗𝑚 = 𝜃 𝜈
1 𝜈1𝑖𝑚𝑥1𝑗𝑚 + 𝜃 𝜈

2 𝜈2𝑖𝑚𝑥2𝑗𝑚..
In addition to the instrument 𝑏1 for 𝑥1 as well as a constant and the exogenous characteristic 𝑥2, we

utilize three additional “BLP instruments” in ̂𝜒 constructed from product characteristics: We construct
two differentiation IVs for 𝑥1, 𝑥2 following GH20 allowing for the fact that 𝑥1 is endogenous (see
app. H.1); finally, we include the number of products in the market (which varies across markets).
Consequently, 𝑑𝑏 = 6 > 𝑑𝛽 = 3, so ̂𝜒 is overidentified for 𝛽 and the extra exclusion restrictions are
potentially useful to identify 𝜃 .
Weorganizeour experiments aroundabaseline specificationof thedata generatingprocess, described

in app.H.2. Exceptwhere they are explicitly varied, these parameters areheld at the baseline throughout
of this section. Implementation details for the estimators are provided in app. H.3.
Before turning to our results we briefly summarize the role of each estimator in our study. While

GMM-M utilizes PLMs for the identification of 𝜃 𝜈, it fails to incorporate all the information in the
likelihoodof theconsumersample. MDLEdoes theopposite: fullyutilizingmicrodata for theestimation
of 𝜃 𝜈while not leveraging the information in the PLMs. CLEER fully exploits all available information
from the data, making it conformant.
7.2 Sample size results
This subsection illustrates the practical implication of conformance with regard to sample sizes.

These experiments vary the size of themicro sample and the number of markets observed in a setting
of strong identification. The following subsection will consider variations in the DGP that alter the
strength of identification while holding sample sizes fixed.
7.2.1 Varying micro sample size. The first experiment varies the size of themicro sample. Growing
𝐼𝑚 while holding𝑀 fixed increases the amount of information in themicro sample relative to the PLMs.
While increasing 𝐼𝑚 should improve the precision of all estimators, GMM-M only benefits via greater
precision in the estimation of the demographicmicro-momentwhereasMDLE andCLEER fully exploit
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the consumer data via themicro-likelihood though the scorewith respect to 𝜃𝑧, 𝜃𝜈, and 𝛿. Fig. 2 presents
the distribution of ̂𝜃𝑧1 , ̂𝜃𝜈1 and ̂𝛽1 from this experiment. Each plot compares the distribution of the three
estimators for a specific consumer sample size (rows) and a given parameter (columns). CLEER is a
solid blue line, GMM-M is a dashed green line,MDLE is a dotted black line. The central row, 𝐼𝑚 = 1 000,
represents our baseline DGP.
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Figure 2:Distribution of parameters for different sizes of consumer sample.

Beginningwith the smallestmicro sample 𝐼𝑚 = 250, CLEERdominates bothGMM-MandMDLE for
̂𝜃𝑧. At this smallmicro-sample size, CLEER andGMM-Mperform similarly for ̂𝜃𝜈 and ̂𝛽, outperforming

MDLE. As 𝐼𝑚 increases, there is significant improvement in the precision of both ̂𝜃𝑧 and ̂𝜃𝜈 for CLEER
andMDLE, both of which utilize the score of the likelihoodwith respect to 𝜃𝜈. In contrast, GMM-Mhas
a smaller improvement as 𝐼𝑚 increases. This is intuitive given its inefficient use of themicro data. At
𝐼𝑚 = 4 000 theMDLE and CLEER almost coincide and outperformGMM-M. The similarity of MDLE
and CLEER for large 𝐼𝑚 is also an implication of conformance.
The left panel of Tbl. 2 presents distribution and inference statistics relating to ̂𝜃𝜈1 for this DGP.

Summary statistics for the other parameters are presented in app. K, which covers all experiments
presented in this section. Themedian absolute error (MAE) numbers in the left panel of tbl. 2 reflect
that increasing 𝐼𝑚 improves the precision of CLEER andMDLE, but hasminimal impact on GMM-M
for the reasons discussed above. In this experiment, none of the estimators suffers from significant bias.
The final two panels of the table consider inference. While all three estimators are close to the targeted
0.95 acceptance probability, we see that, as expected, the standard errors of CLEER andMDLE shrink
fast as 𝐼𝑚 grows. Moreover, when 𝐼𝑚 = 250 or 𝐼𝑚 = 1 000, CLEER is able to generate more precise
estimates.
7.2.2 Varying the number of markets. Wenow reverse the experiment and consider increasing
𝑀while holding 𝐼 fixed. Note that consequently the size of the consumer sample for eachmarket, 𝐼𝑚,
decreases with𝑀. Intuitively, increasing the number of markets increases the amount of information
available from PLMs relative to themicro sample.
As with increasing 𝐼𝑚, increasing𝑀 improves the precision of all estimators. However, whereas

GMM-M and CLEER fully exploit the information in the PLMs,MDLE benefits only in the second step
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Varying Consumer Sample Varying Number of Markets

Criteria 𝐼𝑚 CLEER GMM-M MDLE 𝑀 CLEER GMM-M MDLE

Median 250 0.051 0.069 0.087 10 0.039 0.149 0.041
absolute 1 000 0.032 0.068 0.041 50 0.032 0.068 0.041
error 4 000 0.020 0.067 0.021 1 000 0.015 0.018 0.042

Bias 250 -0.007 -0.004 -0.007 10 -0.008 -0.010 -0.008
1 000 -0.002 0.003 -0.003 50 -0.002 0.003 -0.003
4 000 -0.008 -0.000 -0.009 1 000 0.001 0.001 -0.008

Acceptance 250 0.951 0.967 0.945 10 0.957 0.974 0.957
probability 1 000 0.960 0.953 0.957 50 0.960 0.953 0.957

4 000 0.936 0.957 0.935 1 000 0.949 0.945 0.952

Median S.E. 250 0.078 0.103 0.123 10 0.060 0.218 0.063
1 000 0.051 0.101 0.061 50 0.051 0.101 0.061
4 000 0.029 0.101 0.031 1 000 0.022 0.026 0.061

This Table shows the results from two separate experiments. The left panel shows result for varying
the size of the consumer sample (𝐼𝑚), while holding other parameters fixed. The right panel shows
results for varying the number of markets while holding other parameters fixed (including the total
consumer sample size).

Table 2:Monte Carlo Results for 𝜃𝜈1
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Figure 3:Distribution of parameters for different numbers of markets

(estimating 𝛽 ). Fig. 3 presents results for this experiment. Again, each plot compares the distribution
of the three estimators for a specific overall number of markets (rows) and a given parameter (columns).
For reference, the central row in this figure corresponds to the baseline DGP,𝑀 = 50, which is also the
central DGP of fig. 2.
Visually, both CLEER and MDLE dominate GMM-M when 𝑀 = 10. With little exploitable

information in the PLMs, CLEER and MDLE almost coincide for all parameters. Both methods
outperform GMM-M, which relies more heavily on the relatively sparse information in the PLMs.
As we increase𝑀 (and thus 𝐽), there is significant improvement in the precision of both ̂𝜃𝑧 and ̂𝜃𝜈 for
CLEER andGMM-M, both of which are able to fully exploit the information in ̂𝜒. In contrast, MDLE
improves only for 𝛽 , as it relies on ̂𝜒 exclusively in the second stage. At𝑀 = 1000 GMM-M and
CLEER outperformMDLE for 𝛽 , 𝜃 𝑧 and 𝜃 𝜈. Both estimators perform better thanMDLE because
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the information of the PLMs on 𝜃 dominates that from the likelihood. AlthoughMDLE also benefits
frommore identifying information in ̂𝜒 for 𝛽 , it performsworse thanGMM-M andCLEER even for
𝛽 because less precision in estimating 𝜃 (and thus 𝛿 ) causes a loss of precision in the second stage.
WhileGMM-MandCLEERperform similarly for𝛽 when𝑀 is large, CLEER still outperformsGMM-M
for 𝜃 𝑧 and 𝜃 𝜈 because it efficiently combines identifying information from the PLMswith information
from the likelihood. However, this distinction would disappear were we to raise𝑀 even further.
We presentMAE, bias, coverage probabilities, andmedian standard errors for 𝜃 𝜈

1 in the right panel
of tbl. 2. The results forMAE are intuitive, CLEER andMDLE outperformGMM-Mwhen𝑀 is small;
CLEERandGMM-MoutperformMDLEwhen𝑀 is large. There is little evidenceof bias in any estimator,
and coverage probabilities perform similarly well. As in right panel, CLEER is able to deliver more
precise standard errors whilemaintaining coverage probabilities.
Finally, while computational speed is not our focus. It is worth pointing out that CLEER is

computationally tractable. The largest problem presented in these Monte Carlos, with𝑀 = 1000
and 𝑑𝛿 = 19 000, takes about 4 hours to compute using a single standard processing core on the Penn
State ICDSROARcomputing cluster. Moreover, implementation of CLEER is able to compute estimates
for a version of our DGPwith𝑀 = 500 and 𝐽𝑚 ≈ 190 such that 𝑑𝛿 = 95 000 in under four hours on a
laptop with a (16-core) Intel Core Ultra 7 155H processor and 64Gb of RAM.38

7.3 Parameterization Results
We next consider the estimators’ performance for different parameterization of the DGP while

fixing 𝐼𝑚 and𝑀 at their baseline values. These exercises allow us to examine the impact of changes in
identification strength while holding the size of the data sample fixed.
7.3.1 Varying 𝜃 . In our first exercise, we consider the estimators’ performance as we vary 𝜃 .
Specifically, we conduct nine experiments where we alter the values of 𝜃 𝜈 and 𝜃 𝑧.39 We focus on the
distribution of the random coefficient ̂𝜃𝜈1 , which is plotted in fig. 4. Moving along a row of this figure
varies 𝜃 𝑧 while holding 𝜃 𝜈 fixed; moving down a column varies 𝜃 𝜈 while holding 𝜃 𝑧 fixed. Our
baseline parameter values are in the central panel in fig. 4.40

As discussed in detail in section 4 and app. C, the identifying power of the consumer sample for
𝜃 𝜈 becomes weak as 𝜃 𝑧 → 0. Intuitively, if changes in observable demographics do not affect utility
across products, then comparisons between consumers are not useful inmeasuring substitution. This
explains the poor performance of MDLE for small values of 𝜃 𝑧 (first column). In contrast, GMM-Mand
CLEER perform similarly when 𝜃 𝑧 is small. Both rely on the variation from the PLMs that compose ̂𝜒
to estimate 𝜃 𝜈. While CLEER also incorporates information from themicro sample, this is negligible
when 𝜃 𝑧 is small.
Fig. 4 also documents cases where GMM-M performs relatively poorly but MDLE is comparable

to CLEER. In particular, this occurs when 𝜃 𝑧 is large relative to 𝜃 𝜈 (i.e., panels below the 45 degree
line). As is well known, when random coefficients are normally distributed, the objective function of
GMM-M is symmetric at 0. Consequently, the Hessian is singular, leading to weak identification of 𝜃𝜈

38This timing result uses full version of CLEER, a implementation of the less computationally intensive but asymptotically
equivalent version described in app. G computes the same problem in under two hours.

39For parsimony of presenting the results, we let 𝜃 𝑧
1 = 𝜃 𝑧

2 and 𝜃 𝜈
1 = 𝜃 𝜈

2 throughout this experiment.
40A small number of replications for MDLE estimator fail when 𝜃𝑧 = 0.3 due to the gradient becoming numerically unstable
after several iterations. We do not include these replications in the figures or reported statistics. This issue does not occur
for the CLEER or GMM-M estimators or for MDLE in any other specifications.
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Figure 4:Distribution of ̂𝜃𝜈 across three estimators as we vary 𝜃 𝜈 (rows) and 𝜃 𝑧 (columns).

Figure 5: Joint distribution of ( ̂𝜃𝑧, ̂𝜃𝜈) for CLEER and GMM-M when 𝜃 𝑧 = 2.0 and 𝜃 𝜈 = 1.0.

near 0. The effects of this are visible in the bottom row of fig. 4. While a similar issue arises for CLEER
andMDLE, it is mitigated by the use of the likelihood score.
To illustrate this phenomenon further, fig. 5 plots the joint distribution of ( ̂𝜃𝑧1 , ̂𝜃𝜈1) for CLEER (blue

cross) andGMM-M(redx)when𝜃 𝜈 = 1and𝜃 𝑧 = 2.41 Aswesee, the jointdistributionsof bothCLEER
andGMM-Mare centered at the true parameter values and exhibit strong correlation between ̂𝜃𝜈1 and ̂𝜃𝑧1 .
Intuitively, this correlation is driven by the need to solve the “correlation”micromoment for GMM-M
and the 𝜃𝑧-micro likelihood score for CLEER. Of course, the 𝜃𝑧-score containsmore information than
the correlationmoment as we explain in section 6.3.1. However, these factors alone can only pin down
a curve through the ( ̂𝜃𝑧, ̂𝜃𝜈) plane. To identify these parameters individually, GMM-M relies primarily
on the differentiation IVs in the PLMs, whereas CLEER combines the same PLMs with additional
information from the 𝜃𝜈-micro likelihood score; see section 6. Both of these sources of identification
becomeweak as 𝜃 𝜈 → 0. However, the added informationmeans that CLEERwill (asymptotically)
outperformGMM-M along this path.
Aswe lookacross all panels of fig. 4,CLEERperformswell.42 Whenonlyone sourceof identification is

useful, it roughlymatches theperformanceof the estimator that exploits that source. Whenboth sources

41We choose to focus on this combination of parameter values because when 𝜃 𝜈 = 0.3 the GMM-M micro moments
estimator exhibits a mode at the lower bound of parameter space for 𝜃𝜈 at 0 which is visible in the lower panels of fig. 4.

42CLEER does exhibit some bias in the top row when 𝜃 𝜈 = 2, we explore this further in section 7.4 below.
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Figure 6:Distribution of parameter estimates for (𝜃 𝑧
1 , 𝜃 𝜈

1 , 𝛽1 ) varying the strength of the instrument for
𝑥1. When 𝑎 = 1, 𝑥1 = 𝑏1, the correlation between 𝑥1 and 𝑏1 increases with 𝑎.

are useful, it efficiently weights the two. It does so with no pre-testing, tuning, or other adjustments
on the part of the researcher. This exercise provides a finite sample illustration of the value of the
conformance property in practice.
7.3.2 Varying instrument strength. So far, we have assumed to have access to a strong instrument,
which is a strong data requirement inmany empirical applications. In this experiment, we assess the
sensitivity of the three estimators to varying the strength of the instrument 𝑏1 for the endogenous
variable 𝑥1. As explained in app. H.1, our DGP parameter 𝑎 ∈ [0, 1] governs the strength of this
instrument. Fig. 6 plots the distribution of estimates for (𝜃 𝑧

1 , 𝜃 𝜈
1 , 𝛽1) (columns) varying 𝑎 (rows).

We start with 𝑎 = 1, such that 𝑥1 is exogenous and 𝑏1 = 𝑥1. In this case, all three estimators perform
well, but CLEER has a slightly tighter distribution around the truth. When 𝑎 = 0.5—our baseline case
where themeanF-statistic of the first stage regression of instruments on𝑥1 over all replications is 190.71
(s.d. 18.05) the instrument can be considered strong. For the 𝜃 parameters, this has no effect on the
MDLE two-step, which does not use the instrument to identify 𝜃 . CLEER andGMM-Mboth become
less precise thanwhen 𝑎 = 1. The biggest decline in performance comes fromGMM-M, which ignores
themicro data variation. CLEER, whichwas always themost precise estimator, remains visiblymore
precise thanMDLE for ̂𝜃𝑧, although its advantage for ̂𝜃𝜈1 and ̂𝛽1 is smaller. Finally, when 𝑎 = 0.15, the
mean first stage F-stat is 6.74 (s.d. 2.21), so the instrument is considered weak. As expected, GMM-M
performs poorly for all three parameters. This weakness will carry over to the differentiation IVwhich
is constructed using the predicted values from this regression. However, the distributions of CLEER
andMDLE are essentially identical and remain precise (and approximately normal) for 𝜃 . MDLE
suffers essentially no loss of precision for the estimate of 𝜃 from the 𝑎 = 0.5 case. CLEER is no longer
more precise thanMDLE owing to the fact that the PLMs are no longer adding useful information for
𝜃 , but it matchesMDLE’s performance. There is also a difference for 𝛽 betweenGMM-M and the two
likelihood estimators. SinceMDLE and CLEER identify 𝜃 and 𝛿 from themicro data, all the useful
variation in 𝑏1 is preserved for the estimation of 𝛽 .

30



1.5 2 2.5
0

2

4

6
a

=
0.

5

2 2.5 3
0

2

4

6

2.5 3 3.5
0

2

4

6

CLEER, 11 nodes
CLEER, 19 nodes

GMM-M

Figure 7:Distribution of ̂𝜃 𝜈
1 for different values of 𝜃 𝜈 comparing the CLEER estimator with 11 node

and 19 node quadrature integration with GMM-M.

7.4 Numerical bias
As discussed in app. G.2, in practice likelihood-based estimators are subject to bias due to the use of

numerical integration over 𝜈. This bias will growmore severe as 𝜃 𝜈 rises. All of our experiments so
far have used 11 point Gaussian quadrature (121 nodes over two dimensions of 𝜈) to approximate the
likelihood. We now compare the performance of CLEER using 19 point quadrature (361 nodes) and the
GMM-M estimator—which is unbiased—when 𝜃 𝜈 is large. Specifically we consider 𝜃 𝜈 ∈ {2.0, 2.5, 3}.
Fig. 7 displays the results of this experiment. As before, CLEER using 11 point quadrature is displayed
in blue (solid), and GMM-M is in green (dashed). We introduce a 19 point quadrature implementation
of CLEER displayed in purple (dashed dot).
The first panel, 𝜃 𝜈 = 2, corresponds to the top-center panel of fig. 4. A slight bias is visible in the

11-point quadrature while the 19 point quadrature CLEER andGMM-Mhave similar means (GMM-M
has wider dispersion). In the center panel, 𝜃 𝜈 = 2.5, bias for the 11 point quadrature estimator is more
apparent; it is largely but not completely eliminated bymoving to the 19 point quadrature. TheGMM-M
estimator is more disperse but relatively unbiased. These trends are extended further in the right panel,
when 𝜃 𝜈 = 3.
We have also considered the same experiment when 𝑥 is exogenous, i.e., 𝑎 = 1 (see Grieco et al.,

2023b, fig. 7). Across all values of 𝜃 𝜈, there is significantly smaller bias for both the 11 and 19 point
approximations.This interaction between the strength of the instrument and the degree of bias is
intuitive; a stronger instrument leads CLEER to relymore heavily on the PLMs in estimation.
The degree of approximation bias is under the control of the researcher and can be alleviated at

the expense of more computational resources. Of course, computational demands will rise with the
dimension of 𝜃 𝜈. However, stipulating that the variation exists to identify a high dimensional 𝜃 𝜈, one
could use sparse quadrature methods to attain a high degree of accuracy with a reasonable number
of integration nodes (e.g. Bansal et al., 2021). These results suggest that the bias of CLEER can be
contained to acceptable levels givenmodern computing resources.43

7.5 Diversion
We conclude this section by examining how our three estimators perform in estimating substitution

patterns across the sampling andDGP specifications we have considered.
Specifically, we present results on diversionwith respect to unobserved quality, defined at the truth

as,𝒟𝑗𝑘𝑚 = −𝜕𝜉𝑗𝑚𝜎𝑘𝑚 / 𝜕𝜉𝑗𝑚𝜎𝑗𝑚, with diversion as a function of model parameters𝜓 = (𝜃, 𝛿, 𝛽) denoted
𝒟𝑗𝑘𝑚(𝜓).44

43App. E.3 proposes a conformant, but not efficient, GMM estimator that does not suffer from integration bias.
44We highlight diversion with respect to 𝜉𝑗𝑚 rather than 𝑥𝑗𝑚 because in our DGP consumers can have both positive and
negative preferences for both observed characteristics. While this degree of horizontal differentiation is reasonable
for many empirically relevant characteristics, an implication is that 𝜕𝑥⋅

𝑗𝑚
𝜋𝑗𝑚 may be zero resulting in diversion being
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Experiment Specification CLEER GMM-M MDLE CLEER Logit
11 nodes 19 nodes

Baseline 1.039 1.498 1.304 27.636
[1.651] [2.919] [2.032] [31.093]

Vary 𝐼𝑚 𝐼𝑚 = 250 1.286 1.557 2.292 27.663
[2.291] [2.897] [4.035] [31.003]

𝐼𝑚 = 4,000 0.829 1.517 0.863 27.606
[1.172] [2.907] [1.238] [30.820]

Vary𝑀 𝑀 = 10 1.208 3.079 1.298 27.353
[2.098] [7.018] [2.175] [35.567]

𝑀 = 1,000 0.725 0.737 1.231 27.081
[0.999] [1.021] [2.105] [34.814]

Vary (𝜃𝑧, 𝜃𝜈) 𝜃𝑧 = 0.3, 𝜃𝜈 = 0.3 0.644 0.953 0.789 2.712
[1.133] [1.739] [1.359] [3.428]

𝜃𝑧 = 1.0, 𝜃𝜈 = 0.3 0.607 1.112 0.652 14.854
[0.900] [1.998] [0.985] [17.039]

𝜃𝑧 = 2.0, 𝜃𝜈 = 0.3 1.343 2.075 1.358 60.232
[1.671] [3.744] [1.721] [65.964]

𝜃𝑧 = 0.3, 𝜃𝜈 = 1.0 1.073 1.197 2.614 14.874
[2.118] [2.408] [4.682] [17.399]

𝜃𝑧 = 2.0, 𝜃𝜈 = 1.0 1.768 2.863 1.878 76.397
[2.404] [5.228] [2.577] [83.200]

𝜃𝑧 = 0.3, 𝜃𝜈 = 2.0 2.640 2.427 15.302 60.433
[5.038] [4.522] [22.650] [66.293]

𝜃𝑧 = 1.0, 𝜃𝜈 = 2.0 2.645 2.863 5.338 76.330
[4.569] [5.367] [8.483] [82.870]

𝜃𝑧 = 2.0, 𝜃𝜈 = 2.0 3.297 4.257 4.227 132.494
[4.800] [7.605] [6.512] [143.081]

Vary 𝑎 𝑎 = 0.15 1.200 7.959 1.415 29.214
[1.969] [14.937] [2.299] [32.918]

𝑎 = 1.00 0.808 0.949 1.087 23.023
[1.206] [1.506] [1.778] [25.670]

Integration 𝑎 = 0.50, 𝜃𝜈 = 2.0 2.631 2.856 2.497 76.109
Bias [4.524] [5.578] [4.186] [82.823]

𝑎 = 0.50, 𝜃𝜈 = 2.5 5.492 3.871 3.596 118.481
[8.533] [6.914] [5.869] [127.526]

𝑎 = 0.50, 𝜃𝜈 = 3.0 12.901 5.272 5.365 172.998
[17.299] [9.231] [8.978] [185.756]

Note: 90th percentile is presented in brackets.

Table 3:Median and 90th percentile of 𝔇( ̂𝜓) across estimators and experiments

We compare estimators based on the followingMAE-based summary statistic,

𝔇( ̂𝜓) = 100 ⋅ 𝑀−1
𝑀
∑
𝑚=1

𝐽𝑚
∑
𝑗=1

𝑠𝑗𝑚
1 − 𝑠0𝑚

𝐽𝑚
∑
𝑘=0

|𝒟𝑗𝑘𝑚 −𝒟𝑗𝑘𝑚( ̂𝜓)|. (28)

Inwords,𝔇( ̂𝜓) is the aggregate absolute error in diversion from inside good 𝑗 to all other good (including
the outside good) averaged over all products 𝑗weighting by their inside share. 𝔇( ̂𝜓) ∈ [0, 200) due to
the properties of𝒟𝑗𝑘𝑚(𝜓). Weweight by inside share so that themore popular products (which tend to
bemore important in an antitrust setting) receivemore weight.45

undefined for some products.Moreover, diversion will be numerically unstable when 𝜕𝑥⋅
𝑗𝑚
𝜋𝑗𝑚 is small. In contrast, utility

is monotone in 𝜉𝑗𝑚 across all consumers—like price in most scenarios—resulting in well behaved diversion ratios between
0 and 1.

45In practice, diversion must be numerically approximated. Since we know the true distribution of 𝑧 is normal for our DGP,
we compute𝔇( ̂𝜓) using precise quadrature rules to integrate over both 𝑧 and 𝜈. Hence, integration computing𝔇( ̂𝜓) is
more accurate than that used in estimation. We use the same integration method to compute𝔇( ̂𝜓) for all estimators. As a
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Tbl. 3 presents themedian and 90th percentile of the distribution of 𝔇( ̂𝜓) over all of the experiments
presented in this section. For reference, the final column also provides𝔇( ̂𝜓) for the simple logit model,
which is straightforwardly calculated from observedmarket shares since �̂�logit

𝑗𝑘𝑚 = 𝑠𝑘𝑚/(1 − 𝑠𝑗𝑚). We
view this as an index of the degree of unobserved heterogeneity in each underlying DGP.
All estimators considered dramatically out-perform the logit model across all specifications. This is

no surprise given the logit model lacks the flexibility to capture the heterogeneity in our DGPs. Our
estimators tend to capture substitution patterns well; this is intuitive given they are correctly specified.
Overall, CLEER tends to outperformGMM-MandMDLE. Indeed, CLEERoutperformsMDLEacross

all specifications, although the difference is small in cases wheremicro data is the dominant source
of identification (i.e., when the micro sample is large, there is a significant degree of micro sample
variation, and the product level instruments are weak). Comparing CLEER to GMM-M, the only case
in the top panel where GMM-M outperforms CLEER is when 𝜃 𝑧 = 0.3, 𝜃 𝜈 = 2. Here, the integration
bias from the likelihoodwhen 𝜃 𝜈 is large outweighs the advantage from leveraging themicro sample
when 𝜃 𝑧 is small. The bottom panel shows that integration bias continues to be exacerbated as we set
𝜃 𝜈 even higher. However, increasing the quadrature precision from 11 to 19 nodes largely alleviates
the issue. Indeed, at the 90th percentile, CLEERwith 19 node quadrature outperforms GMM-M for
across all experiments. Finally, it is worth noting that the fact that logit model performs so poorly in the
bottom panel suggests that the degree of heterogeneitymay be higher than is empirically relevant.

8 Conclusion
Random coefficients discrete choice demand models are a workhorse of applied industrial orga-

nization. In this paper, we propose CLEER, which optimally combines the likelihood for purchase
data with product level exogeneity restrictions. This estimator does not require additional parametric
assumptions relative to a GMMestimator. CLEER is a unified estimator that conforms to a wide variety
of data environments and achieves efficiency in each. It has an additional advantage that inference is
straightforward and is correct undermore general assumptions than the standard approach. Finally,
CLEER is computationally tractable, suggesting that it will be directly useful for applied work.
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A Consumer demographics
The paper and proof assume that the distribution of consumer demographics 𝐺 is observed and

constant across markets. It moreover assumes that the micro sample is a random sample from the
population. In this appendix, we show how both of these assumptions can be relaxed.
A.1 Estimation of 𝐺 or 𝐺𝑚
If we maintain that 𝐺 does not vary across markets, an estimator of 𝐺 using a sample size that

grows at rate faster than𝑀 and 𝐼 can be used in its place without affecting the asymptotics. We view
this as a typical case when one uses a population census (such as the Decennial Census) or large
demographic survey (such as the Current Population Survey or American Community Survey) to
estimate the superpopulation. Onemay also want to allow the superpopulation𝐺𝑚 to vary bymarket.
In this case, it is reasonable to assume that the fastest possible estimator of 𝐺𝑚 converges at rate𝑁𝑚
since this is the size of the observed population.
Regardless of how𝐺𝑚 is (consistently) estimated, our estimator remains consistent, but in some cases

inferencewould need to be adjusted to account for estimation error in ̂𝐺𝑚. If 𝐼𝑚 and𝑀 are small relative
to𝑁𝑚—acommon case—estimation of 𝐺𝑚will again be asymptotically negligible. If 𝐼𝑚 is large relative
to𝑁𝑚 and amarket-specific𝐺𝑚 is estimated at rate√𝑁𝑚, our estimator’s inference procedure would
need to be adjusted. Alternatively, onemay consider an alternative estimator of the (finite) population
analog of 𝐺𝑚, in which one accounts for inclusion in themicro sample when integrating out 𝑧𝑖𝑚 for
individuals outside themicro sample. However, this is beyond the scope of this paper.
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A.2 Selection
Ourmethodology combines themicro-sample with the product shares by integrating out 𝑧𝑖𝑚 in the

choice probabilities when individual 𝑖 is outside themicro-sample, yielding

𝜋𝐷=0𝑗𝑚 (𝛿, 𝜃) = ∫ℙ(𝑦𝑖𝑗𝑚 = 1 ∩ 𝐷𝑖𝑚 = 0 | 𝑧𝑖𝑚 = 𝑧)d𝐺𝑚(𝑧).

This allows for a variety of forms of selection. Clearly, random selection poses no difficulty as in this
case𝜋𝐷=0𝑗𝑚 = ℙ(𝐷𝑖𝑚 = 0)𝜋𝑗𝑚, leading to the loglikelihood presented in (6) (up to a constant).
Interestingly, deterministic selection based on 𝑦𝑖𝑚 of the form𝐷𝑖𝑚 = 𝐷∗

𝑖𝑚𝟙(𝑦𝑖0𝑚 ∈ 𝕁)where𝐷∗
𝑖𝑚 is

random and 𝕁 represents a subset of products is also straightforward. This case is common, for example
with vehicle registration data, administrative data of regulated industries, or data on sales of a particular
subset of firms. In this case,ℙ(𝐷𝑖𝑚 = 1 ∩ 𝑦𝑖𝑗𝑚 = 1 | 𝑧𝑖𝑚) = ℙ(𝐷∗

𝑖𝑚 = 1)𝜋𝑧𝑖𝑚𝑗𝑚 𝟙(𝑗 ∈ 𝕁), so we have

𝜋𝐷=0𝑗𝑚 = {
𝜋𝑗𝑚 𝑗 ∉ 𝕁

ℙ(𝐷∗
𝑖𝑚 = 0)𝜋𝑗𝑚 𝑗 ∈ 𝕁

.

Moreover, in both of the above cases, because only logarithms of the choice probabilities appear in the
loglikelihood, theℙ(𝐷∗

𝑖𝑚 = 0) factor only adds a constant to the loglikelihood and is hence irrelevant.
Selection dependent on 𝑧𝑖𝑚 can be accommodated by accounting for selection when integrating over

the distribution of demographics. 𝐺𝐷=0
𝑚 (𝑧), the distribution of 𝑧𝑖𝑚 in market𝑚 but not in themicro

sample, and its complement𝐺𝐷=1
𝑚 (𝑧) are easy to compute from the consumer level data and the known

distribution of 𝑧𝑖𝑚 in the population,𝐺𝑚(𝑧). If selection does not depend on 𝑦𝑖⋅𝑚 except through 𝑧𝑖𝑚
then,

𝜋𝐷=0𝑗𝑚 = ∫ℙ(𝐷𝑖𝑚 = 0 | 𝑧𝑖𝑚 = 𝑧)𝜋𝑧𝑗𝑚d𝐺𝑚(𝑧) = ℙ(𝐷𝑖𝑚 = 0)∫𝜋𝑧𝑗𝑚(𝛿, 𝜃)d𝐺𝐷=0
𝑚 (𝑧).

More general formswould have to be explicitlymodeled and are outside the scope of this paper. For
example, we are unable to write down a likelihood that incorporates selection into themicro sample
based on 𝜈 (e.g., taste for sugar) without further assumptions. However, these assumptions would also
be needed to formmicromoments that would address to this form of selection.
Selection into the micro sample is closely related to the issue of compatibility described in CG23

which is visible when there are discrepancies between population and micro sample distributions.
They propose assuming compatibility of specific moments for use in estimationwhen othermoments
indicate that themicro sample and population distributions are incompatible. See CG23 for examples.

B Lemmas for proofs of consistency and asymptotic normality
This appendix contains the primary supporing lemmas used in theorems 1 and 2. It concludes with

L5 which establishes consistency of �̂�, ̂𝛿, and ̂𝛽. L9, 10 and 12 to 15, which are referenced here, are
relegated to apps. J.2 and J.3.
B.1 Consistency
Lemma 2 (�̂�, 𝛷 approximations). Given our assumptions, (a) sup𝛩𝑐

𝜖×ℿ𝜅
|𝛷(𝜃, 𝜋)−𝛷(𝜃, 𝜋 )|𝟙[𝜌◾(𝜋) ≤

𝜌id(𝜃)𝜂] / 𝜌id(𝜃) ≺ 1; (b) sup𝛩𝑐
𝜖×ℿ𝜅

|𝛥�̂�(𝜃, 𝜋)| / 𝜌𝐷(𝜃, 𝜋) ≺ 1; (c) 𝛷(𝜃 , 𝑠) ⪯ 1, �̂�(𝜃 , 𝑠) ⪯ 1, and
�̂�(𝜃 , 𝜋 ) ⪯ 1.
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Proof. First recall that �̂�(𝜃, 𝜋) = ‖𝒫𝛿(𝜃, 𝜋)‖2 / 2 and𝛷(𝜃, 𝜋) = ‖𝒫[𝛿(𝜃, 𝜋) − 𝛿(𝜃 , 𝜋 )]‖2 / 2. For (a),
rearranging terms,46 we apply the triangle and Schwarz inequalities to obtain,

|𝛷(𝜃, 𝜋)−𝛷(𝜃, 𝜋 )| ≤ ‖𝒫[𝛿(𝜃, 𝜋)−𝛿(𝜃, 𝜋 )]‖2+‖𝒫[𝛿(𝜃, 𝜋)−𝛿(𝜃, 𝜋 )]‖⋅‖𝒫[𝛿(𝜃, 𝜋 )−𝛿(𝜃 , 𝜋 )‖. (29)

Let ̃𝐵 = 𝐵(𝐵▿𝐵)−1/2. By the MVT, ‖𝒫[𝛿(𝜃, 𝜋) − 𝛿(𝜃, 𝜋 )]‖ = ‖𝒫𝔻𝜋(𝜃, �̊�)(𝜋 − 𝜋 )‖ for some �̊�. Now,
since𝒫 ̃𝐵 ̃𝐵▿ = 𝒫, ̃𝐵▿𝒫 ̃𝐵 ≤ ̃𝐵▿ ̃𝐵 = 𝕀, and hence𝒫▿𝒫 = ̃𝐵( ̃𝐵▿𝒫 ̃𝐵) ̃𝐵▿ ≤ ̃𝐵 ̃𝐵▿,47

‖𝒫[𝛿(𝜃, 𝜋) − 𝛿(𝜃, 𝜋 )]‖ ≤ ‖ ̃𝐵▿𝔻𝜋(𝜃, �̊�)(𝜋 − 𝜋 )‖
triangle

≤ ‖ ̃𝐵▿𝔻𝜋(𝜃, �̊�)(𝜋 − 𝑠)‖ + ‖ ̃𝐵▿𝔻𝜋(𝜃, �̊�)(𝑠 − 𝜋 )‖
Schwarz

≤ √𝜌◾(𝜋)‖ ̃𝐵▿𝔻𝜋(𝜃, �̊�)‖𝑁 + ‖𝑠 − 𝜋 ‖ ⋅ ‖ ̃𝐵▿𝔻𝜋(𝜃, �̊�)‖, (30)

where ‖𝑥‖𝑁 = √∑𝑚 ‖𝑥𝑚‖2 / 𝑁𝑚 and 𝜌◾(𝜋) as defined in theorem 1, step 3. Now, by F[iii]

sup
𝛩𝑐
𝜖×ℿ𝜅

‖ ̃𝐵▿𝔻𝜋(𝜃, 𝜋)‖ ≤ λλλmax[(
𝐵▿𝐵
𝑀 )

−1/2
] sup
𝛩𝑐
𝜖×ℿ𝜅√

1
𝑀∑

𝑚
‖𝐵𝑚‖2‖𝔻𝜋𝑚(𝜃, 𝜋𝑚)‖2

L9(d)

⪯ 𝜅−3. (31)

Moreover, sup𝛩𝑐
𝜖×ℿ𝜅

‖ ̃𝐵▿𝔻𝜋(𝜃, 𝜋)‖𝑁 ≤ 𝜌ᵆ sup𝛩𝑐
𝜖×ℿ𝜅

‖ ̃𝐵▿𝔻𝜋(𝜃, 𝜋)‖
L9(d)

⪯ 𝜌ᵆ𝜅−3, where 𝜌ᵆ = 1/min𝑚√𝑁𝑚.
Consequently, since 𝔼‖𝑠 − 𝜋 ‖2 ⪯ ∑𝑚𝑁−1

𝑚 = 𝜌𝑁, substituting into (30),

‖𝒫[𝛿(𝜃, 𝜋) − 𝛿(𝜃, 𝜋 )]‖ ≤ √𝜌◾(𝜋)𝑂𝑝(𝜌ᵆ𝜅−3) + 𝑂𝑝(√𝜌𝑁𝜅−3). (32)

Thus,

sup
𝛩𝑐
𝜖×ℿ𝜅

‖𝒫[𝛿(𝜃, 𝜋) − 𝛿(𝜃, 𝜋 )]‖𝟙[𝜌◾(𝜋) ≤ 𝜌id(𝜃)𝜂]
√𝜌id(𝜃)

⪯ sup
𝛩𝑐
𝜖×ℿ𝜅

𝜌ᵆ√𝜌◾(𝜋)𝟙[𝜌◾(𝜋) ≤ 𝜌id(𝜃)𝜂] + √𝜌𝑁
𝜅3√𝜌id(𝜃)

≤
𝜌ᵆ√𝜂
𝜅3 +

√
𝜌𝑁

𝜅6 ̆𝜌id(𝜖)
C,I

≺ 1. (33)

Finally, from (29) we obtain

sup
𝛩𝑐
𝜖×ℿ𝜅

|𝛷(𝜃, 𝜋) − 𝛷(𝜃, 𝜋 )|𝟙[𝜌◾(𝜋) ≤ 𝜌id(𝜃)𝜂]
𝜌id(𝜃)

(33),B

≤ 𝑜𝑝(1) + 𝑜𝑝(1) sup
𝛩𝑐
𝜖 √

𝜌𝛷(𝜃)
𝜌id(𝜃)⏟⎵⏟⎵⏟
≤1

≺ 1,

which concludes the proof of (a).
Now (b). Let 𝛿 = 𝛿(𝜃, 𝜋) and 𝛿 = 𝛿(𝜃 , 𝜋 ). First, ‖𝒫𝛿 ‖ = ‖𝒫𝜉‖ ⪯ 1. Reusing fn. 46 with

𝑥 = 𝒫(𝛿 + 𝛿 ), 𝑦 = 𝒫𝛿, and 𝑧 = 𝒫𝛿 and applying the triangle and Schwarz inequalities,

|�̂�(𝜃, 𝜋) − 𝛷(𝜃, 𝜋)| = ||‖𝒫𝛿‖2 − ‖𝒫(𝛿 − 𝛿 )‖2|| / 2 ≤

‖𝒫𝛿 ‖2 + ‖𝒫𝛿 ‖ ⋅ ‖𝒫(𝛿 − 𝛿 )‖ = 𝑂𝑝(1)[𝑂𝑝(1) + ‖𝒫(𝛿 − 𝛿 )‖]. (34)

By the triangle inequality ‖𝒫(𝛿 − 𝛿 )‖ ≤ ‖𝒫[𝛿(𝜃, 𝜋) − 𝛿(𝜃, 𝜋 )]‖ + ‖𝒫[𝛿(𝜃, 𝜋 ) − 𝛿 ]‖. Working with
the first term, by (32) and because 𝜌𝐷(𝜃, 𝜋) ≥ √𝜂3𝜌id(𝜃)𝜌◾(𝜋) and 𝜌𝐷(𝜃, 𝜋) ≥ 𝜂2𝜌id(𝜃) = 𝜅6𝜌id(𝜃),

46We use the equality ‖𝑥 − 𝑧‖2 − ‖𝑦 − 𝑧‖2 = ‖𝑥 − 𝑦‖2 + 2(𝑥 − 𝑦)▿(𝑦 − 𝑧) with 𝑥 = 𝒫𝛿(𝜃,𝜋), 𝑦 = 𝒫𝛿(𝜃,𝜋 ), and
𝑧 = 𝒫𝛿(𝜃 ,𝜋 ).

47Using ‖𝒫�̃�𝑥‖2 = 𝑥▿�̃�▿𝒫�̃�𝑥 ≤ ‖𝑥‖2.
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sup
𝛩𝑐
𝜖×ℿ𝜅

‖𝒫[𝛿(𝜃, 𝜋) − 𝛿(𝜃, 𝜋 )]‖
𝜌𝐷(𝜃, 𝜋)

≤ sup
𝛩𝑐
𝜖×ℿ𝜅

√𝜌◾(𝜋)𝑂𝑝(𝜌ᵆ) + 𝑂𝑝(√𝜌𝑁)
𝜌𝐷(𝜃, 𝜋)𝜅3

C,I

≤ sup
𝛩𝑐
𝜖

𝑂𝑝(𝜌ᵆ)

𝜅3√𝜂3𝜌id(𝜃)
+ 𝑜𝑝(1)

C

≺ 1.

For the second term,

sup
𝛩𝑐
𝜖×ℿ𝜅

‖𝒫[𝛿(𝜃, 𝜋 ) − 𝛿 ]‖
𝜌𝐷(𝜃, 𝜋)

⪯ sup
𝛩𝑐
𝜖

√𝜌𝛷(𝜃)
𝜂2𝜌id(𝜃)

≤ 1
𝜂2√ ̆𝜌id(𝜖)

C

≺ 1.

Combining terms, we have the asserted result. Finally, (c):

2𝛷(𝜃 , 𝑠) = ‖𝒫[𝛿(𝜃 , 𝑠) − 𝛿 ]‖2 ≤ ‖ ̃𝐵▿[𝛿(𝜃 , 𝑠) − 𝛿 ]‖2
MVT

≤ max
0≤𝑡≤1

‖ ̃𝐵▿𝔻𝜋[𝜃 , 𝜋 + 𝑡(𝑠 − 𝜋 )](𝑠 − 𝜋 )‖2
L9(d)

⪯ 𝜅−6𝜌𝑁
I

⪯ 1,

so 𝛷(𝜃 , 𝑠) ⪯ 1. For �̂�(𝜃 , 𝑠), we reuse (34) to obtain �̂�(𝜃 , 𝑠) ≤ |�̂�(𝜃 , 𝑠) − 𝛷(𝜃 , 𝑠)| + 𝛷(𝜃 , 𝑠) ⪯
√𝛷(𝜃 , 𝑠) + 1 + 𝛷(𝜃 , 𝑠) ⪯ 1. Finally, because𝛷(𝜃 , 𝜋 ) = 0we similarly get �̂�(𝜃 , 𝜋 ) ⪯ 1.

Lemma3 ( ̂ℒ⬩, ℒ⬩ approximations). Givenourassumptions, (a) sup𝛩𝑐
𝜖×ℿ𝜅

|ℒ⬩(𝜃, 𝜋)−ℒ⬩(𝜃, 𝜋 )|𝟙[𝜌◾(𝜋) ≤
𝜌id(𝜃)𝜂] / 𝜌id(𝜃) ≺ 1; (b) sup𝛩𝑐

𝜖×ℿ𝜅
|𝛥 ̂ℒ⬩(𝜃, 𝜋)| / 𝜌𝐷(𝜃, 𝜋) ≺ 1; (c) sup𝛩𝑐

𝜖×ℿ𝜅
| ̂ℒ⬩(𝜃 , 𝑠)| / 𝜌𝐷(𝜃, 𝜋) ⪯

| ̂ℒ⬩(𝜃 , 𝑠)| / [𝜂2 ̆𝜌id(𝜖)] ≺ 1.
Proof. For (a), we break up the problem into two smaller ones. Let 𝜏𝑚(𝜋) = 𝟙(‖𝜋𝑚 − 𝜋𝑚‖ ≤ 𝜅)
and 𝛼(𝜃, 𝜋) = 𝟙[𝜌◾(𝜋) ≤ 𝜌id(𝜃)𝜂]. We first show that sup𝛩𝑐

𝜖×ℿ𝜅
∑𝑚(1 − 𝜏𝑚(𝜋))ℒ⬩

𝑚(𝜃, 𝜋𝑚)𝛼(𝜃, 𝜋) /
𝜌id(𝜃) ≺ 1. Noting thatmax𝑚 sup𝛩𝑐

𝜖×ℿ𝜅
ℒ⬩
𝑚(𝜃, 𝜋)/𝑁𝑚

L13

⪯1 and dropping the arguments from 𝛼, 𝜏𝑚, we
have uniformly over𝛩𝑐

𝜖 × ℿ𝜅,48

𝛼∑𝑚𝑁𝑚(1 − 𝜏𝑚)
𝜌id(𝜃)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

1©

≤
𝛼∑𝑚𝑁𝑚(1 − 𝜏𝑚)‖𝜋𝑚 − 𝜋𝑚‖2

𝜅2𝜌id(𝜃)
≤
2𝛼∑𝑚𝑁𝑚(1 − 𝜏𝑚)(‖𝜋𝑚 − 𝑠𝑚‖2 + ‖𝑠𝑚 − 𝜋𝑚‖2)

𝜅2𝜌id(𝜃)

L12(d)

≤
2𝛼𝜌◾(𝜋)
𝜅2𝜌id(𝜃)⏟⎵⏟⎵⏟

2©

+𝑜𝑝(1) 𝛼
(log𝑀)2

𝜅2 ∑
𝑚

(1 − 𝜏𝑚)
𝜌id(𝜃)⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟

3©

,

recalling that 𝜌◾ = ∑𝑚𝑁𝑚‖𝜋𝑚 − 𝑠𝑚‖2. Now, use the definition of 𝛼 and recall 𝜂 = 𝜅3 such that 2© ≤

2𝜅 ≺ 1. Further, 3© is negligible (relative to 1©) because (log𝑀)2/𝜅2
I

≺ min𝑚𝑁𝑚. So sup𝛩𝑐
𝜖×ℿ𝜅

1© ≺ 1.
That leaves us with

sup
𝛩𝑐
𝜖×ℿ𝜅

𝛼∑𝑚 𝜏𝑚|ℒ⬩
𝑚(𝜃, 𝜋𝑚) − ℒ⬩

𝑚(𝜃, 𝜋𝑚)|
𝜌id(𝜃)

MVT
Scwz.
≤ sup

𝛩𝑐
𝜖×ℿ𝜅

𝛼∑𝑚 𝜏𝑚‖𝜋𝑚 − 𝜋𝑚‖ ⋅ ‖ℒ⬩
𝜋𝑚(𝜃, �̊�𝑚)‖

𝜌id(𝜃)

Schwarz

≤ sup
𝛩𝑐
𝜖×ℿ𝜅√

𝛼∑𝑚𝑁𝑚‖𝜋𝑚 − 𝜋𝑚‖2

𝜌id(𝜃)
sup
𝛩𝑐
𝜖×ℿ𝜅√

∑
𝑚

𝛼𝜏𝑚‖ℒ⬩
𝜋𝑚(𝜃, 𝜋𝑚)‖2

𝑁𝑚𝜌id(𝜃)
⪯ √𝜂 ×

1
√ ̆𝜌id(𝜖)

C

≺ 1,

where the penultimate inequality follows from L12(d), L15(e), and L9(f). This completes (a).
Now (b). We can replace𝛥 ̂ℒ⬩(𝜃, 𝜋)with𝛥 ̂ℒ⬩(𝜃, 𝜋) − 𝛥 ̂ℒ⬩(𝜃, 𝜋 ) because

sup
𝛩𝑐
𝜖×ℿ𝜅

|𝛥 ̂ℒ⬩(𝜃, 𝜋 )|
𝜌𝐷(𝜃, 𝜋)

L10(a)

≺ sup
𝛩𝑐
𝜖×ℿ𝜅

√𝜌id(𝜃)
𝜌𝐷(𝜃, 𝜋)

log2 𝐼+ ⪯
log2 𝐼+
𝜂2 ̆𝜌id(𝜖)

C

≺ 1.

48For the second inequality, note that ‖𝑎 + 𝑏‖2 = 2(‖𝑎‖2 + ‖𝑏‖2) − ‖𝑎 − 𝑏‖2 for 𝑎 = 𝜋𝑚 − 𝑠𝑚, 𝑏 = 𝑠𝑚 −𝜋𝑚.
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Thus, since ‖𝜃𝑧‖ ≤ 𝐶𝜖‖𝜃 − 𝜃 ‖𝜆 by L12(b), we have

sup
𝛩𝑐
𝜖×ℿ𝜅

|𝛥 ̂ℒ⬩(𝜃, 𝜋) − 𝛥 ̂ℒ⬩(𝜃, 𝜋 )|
𝜌𝐷(𝜃, 𝜋)

MVT
Scwz.
≤ 𝐶𝜖 sup

𝛩𝑐
𝜖×ℿ𝜅

‖𝜃 − 𝜃 ‖𝜆 ⋅ ‖𝛥 ̂ℒ⬩
𝜃𝑧𝜋( ̊𝜃𝑧, 𝜃𝜈, �̊�)(𝜋 − 𝜋 )‖
𝜌𝐷(𝜃, 𝜋)

Schwarz

≤ 𝐶𝜖 sup
𝛩𝑐
𝜖×ℿ𝜅

√∑𝑚 ‖𝜃 − 𝜃 ‖2𝜆 ⋅ ‖𝛥 ̂ℒ⬩
𝜃𝑧𝜋𝑚( ̊𝜃𝑧, 𝜃𝜈, �̊�)‖2 ⋅ ‖𝜋𝑚 − 𝜋𝑚‖2

𝜌𝐷(𝜃, 𝜋)

L10(b)

≺ 𝜅−6(log 𝐼+)3 sup
𝛩𝑐
𝜖×ℿ𝜅

√∑𝑚 𝐼𝑚‖𝜃 − 𝜃 ‖2𝜆 ⋅ ‖𝜋𝑚 − 𝜋𝑚‖2

𝜌𝐷(𝜃, 𝜋)
≕ 4©.

Applying fn. 48, we can thus break up 4© into two terms. The term corresponding to 𝑠𝑚 − 𝜋𝑚, is by
L12(d) bounded above by

𝜌ᵆ𝜅−6(log 𝐼+)3(log𝑀) sup
𝛩𝑐
𝜖×ℿ𝜅

√𝜌id(𝜃)
𝜂2𝜌id(𝜃)

𝜂 = 𝜅3

⪯
𝜌ᵆ(log 𝐼+)3 log𝑀

𝜅12√ ̆𝜌id(𝜖)

C,I[i]

≺ 1.

Now the𝜋𝑚 − 𝑠𝑚 component,

(log 𝐼+)3 sup
𝛩𝑐
𝜖×ℿ𝜅

√∑𝑚 𝐼𝑚‖𝜃 − 𝜃 ‖2𝜆 ⋅ ‖𝜋𝑚 − 𝑠𝑚‖2

𝜅6𝜌𝐷(𝜃, 𝜋)
I[ii]

⪯ (log 𝐼+)3𝜌ᵆ sup
𝛩𝑐
𝜖×ℿ𝜅

√𝜌id(𝜃)𝜌◾(𝜋)
𝜅6√𝜂3𝜌id(𝜃)𝜌◾(𝜋)

𝜂 = 𝜅3
=
(log 𝐼+)3𝜌ᵆ

𝜅10.5
C,I[i]

≺ 1.

Hence, (b) holds.
Finally, (c). Recall that 𝜌𝐷(𝜃, 𝜋) = 𝜂max(𝜂𝜌id(𝜃), 𝜌◾(𝜋)) ≥ 𝜂2 ̆𝜌id(𝜖) for all 𝜃 ∈ 𝛩𝑐

𝜖, so we focus on the
final inequality of the statement. For �̊� between 𝑠 and𝜋 ,

| ̂ℒ⬩(𝜃 , 𝑠)|
𝜂2 ̆𝜌id(𝜖)

MVT
tri.
≤

x©

⏞⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏞
||(𝑠 − 𝜋 )▿

̂ℒ⬩
𝜋(𝜃 , 𝜋 )
𝜂2 ̆𝜌id(𝜖)

|| +

y©

⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞|(𝑠 − 𝜋 )▿ ̂ℒ⬩
𝜋𝜋(𝜃 , �̊�)(𝑠 − 𝜋 )|
𝜂2 ̆𝜌id(𝜖)

.

We show separately that x© and y© vanish. First, by Schwarz, x© is bounded above by ‖𝑠 − 𝜋 ‖ ⋅ ‖ ̂ℒ⬩
𝜋 ‖ /

[𝜂2 ̆𝜌id(𝜖)]. Now, since 𝑠𝑗𝑚 = 𝑁−1
𝑚 ∑𝑖 𝑦𝑖𝑗𝑚 and𝕍𝑦𝑖𝑗𝑚 = 𝜋𝑗𝑚(1−𝜋𝑗𝑚),𝔼‖𝑠−𝜋 ‖2 = ∑𝑚𝑗 𝔼|𝑠𝑗𝑚−𝜋𝑗𝑚|

2 =

∑𝑚𝑗𝑁
−2
𝑚 ∑𝑖 𝔼[𝜋𝑗𝑚(1 − 𝜋𝑗𝑚)] ≤ 𝜌𝑁

I

≺ 1. Further, by the informationmatrix equality, we show x© ≺ 1
since,

𝔼(‖ ̂ℒ⬩
𝜋 ‖2 ∣ 𝔸)

𝜂4 ̆𝜌2id(𝜖)
=
tr(ℒ⬩

𝜋𝜋)
𝜂4 ̆𝜌2id(𝜖)

L15(f)

⪯ 𝐼𝜆2

𝜅12 ̆𝜌2id(𝜖)

C

⪯ 1
𝜅12 ̆𝜌id(𝜖)

C

≺ 1.

That leaves y©. Letℿnbh
𝑚 = {𝜋𝑚: √𝑁𝑚‖𝜋𝑚 − 𝜋𝑚‖ ≤ log𝑀}. Noting that ∀𝑚: ‖�̊�𝑚 − 𝜋𝑚‖ ≤ ‖𝑠𝑚 − 𝜋𝑚‖,

such that by L12(d),ℙ(∃𝑚: �̊�𝑚 ∉ ℿnbh
𝑚 ) ≺ 1. By Schwarz, recalling 𝜆 = ‖𝜃 𝑧‖, ̂ℒ = 𝛥 ̂ℒ + ℒ,

y© ⪯ ‖𝑠 − 𝜋 ‖2max
𝑚

max
ℿnbh
𝑚

‖ ̂ℒ⬩
𝜋𝜋𝑚(𝜃 , 𝜋𝑚)‖
𝜂2 ̆𝜌id(𝜖)

MVT:𝜃𝑧

≤
𝜌𝑁

𝜂2 ̆𝜌id(𝜖)
max
𝑚

max
ℿnbh
𝑚
( a©𝑚 + b©𝑚 + c©𝑚), (35)

where a©𝑚 = ‖ ̂ℒ⬩
𝜋𝜋𝑚(0, 𝜃𝜈 , 𝜋𝑚)‖

L15(a)
= 0, b©𝑚 = 𝜆max0≤𝑡≤1 ‖𝛥 ̂ℒ⬩

𝜋𝜋𝜃𝑧𝑚(𝑡𝜃
𝑧, 𝜃𝜈 , 𝜋𝑚)‖, and c©𝑚 =

𝜆max0≤𝑡≤1 ‖ℒ⬩
𝜋𝜋𝜃𝑧𝑚(𝑡𝜃

𝑧, 𝜃𝜈 , 𝜋𝑚)‖. Finally,
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𝜌𝑁
𝜂2 ̆𝜌id(𝜖)

max
𝑚

max
ℿnbh
𝑚

b©𝑚
L10(b)

≺ max
𝑚

√𝐼𝑚𝜆2

√ ̆𝜌id(𝜖)
𝜌𝑁(log 𝐼+)3

𝜂2𝜅9√ ̆𝜌id(𝜖)

C,I
𝜂 = 𝜅3

≺ 1;

𝜌𝑁
𝜂2 ̆𝜌id(𝜖)

max
𝑚

max
ℿnbh
𝑚

c©𝑚
L15(f)

≺
𝜌𝑁

𝜂2 ̆𝜌id(𝜖)
max
𝑚

(𝐼𝑚𝜆2)
𝜂 = 𝜅3

≺
𝜌𝑁
𝜅6

I[i]

≺ 1,

So y© ≺ 1, which completes the proof of (c).

The following lemma establishes step 6 of theorem 1, showing that the restriction of steps 1 to 5 to
ℿ𝜅 ⊂ ℿ is without loss of generality.
Lemma 4 (step 6). With probability approaching one, ( ̂𝜃, �̂�) ∈ 𝛩 × ℿ𝜅.
Proof. It is sufficient to show that lim𝑀→∞ ℙ[inf𝛩×ℿ𝜅𝑐 �̂�(𝜃, 𝜋) − �̂�(𝜃 , 𝜋 ) ≤ 0] = 0. Since
�̂�(𝜃 , 𝜋 ) ⪯ 1 by L2(c) and �̂�(𝜃, 𝜋) ≥ 0 by definition, we only need to establish that the likelihood
difference inf𝛩×ℿ𝜅𝑐 ̂ℒ(𝜃, 𝜋) − ̂ℒ(𝜃 , 𝜋 ) diverges with probability approaching one. For notational
parsimony, we tackle themost challenging case, i.e. where 𝐼 = 𝑁, which implies,

̂ℒ𝑚(𝜃, 𝜋𝑚) = ∑
𝑖𝑗
𝑦𝑖𝑗𝑚 log

𝜍𝑖𝑗𝑚𝜋𝑗𝑚
𝜍𝑖𝑗𝑚𝜋𝑗𝑚

+ 𝑁𝑚∑
𝑗
𝑠𝑗𝑚 log

𝑠𝑗𝑚
𝜋𝑗𝑚

= ∑
𝑖𝑗
𝑦𝑖𝑗𝑚 log

𝜍𝑖𝑗𝑚
𝜍𝑖𝑗𝑚

+ 𝑁𝑚∑
𝑗
𝑠𝑗𝑚 log

𝑠𝑗𝑚
𝜋𝑗𝑚

= ∑
𝑖𝑗
𝑦𝑖𝑗𝑚 log

𝜍𝑖𝑗𝑚
𝜍𝑖𝑗𝑚

+ ̂ℒ𝑚(𝜃 , 𝜋 ).

Define ℰ𝑚 = {𝑗: 𝜋𝑗𝑚 ≥ 𝜅}. We will split ̂ℒ𝑚(𝜃, 𝜋) − ̂ℒ𝑚(𝜃 , 𝜋𝑚) into terms involving ℰ𝑚 and terms
involving its complement ℰ𝑐𝑚 and bound these terms individually.
First, the ℰ𝑐𝑚 term. If ℰ𝑐𝑚 is empty, this term is zero, so suppose ℰ𝑐𝑚 is non-empty. Let ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚) =

log 𝜍𝑖𝑗𝑚(𝜃, 𝜋𝑚).By L13, for some fixed𝐶 < ∞,

∑
𝑖
∑
ℰ𝑐𝑚

𝑦𝑖𝑗𝑚 log
𝜍𝑖𝑗𝑚
𝜍𝑖𝑗𝑚

L13

≥ ∑
𝑖
∑
ℰ𝑐𝑚

𝑦𝑖𝑗𝑚[log
𝜋𝑗𝑚
𝜋𝑗𝑚

−𝐶‖𝑧𝑖𝑚‖−𝐶] =

1©𝑚

⏞⎴⎴⎴⎴⏞⎴⎴⎴⎴⏞
𝑁𝑚∑

ℰ𝑐𝑚

𝑠𝑗𝑚 log
𝜋𝑗𝑚
𝜋𝑗𝑚

−

2©𝑚

⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞𝐶∑
𝑖
𝑦𝑖ℰ𝑐𝑚(‖𝑧𝑖𝑚‖ + 1),

with 𝑦𝑖ℰ𝑐𝑚 = ∑ℰ𝑐𝑚
𝑦𝑖𝑗𝑚. Recalling 𝜅 = 𝜅4/3𝜋 = exp(−4𝜅↑𝛿),min𝑗𝑚 𝜋𝑗𝑚/𝜅 = exp(𝜅↑𝛿)min𝑗𝑚 𝜋𝑗𝑚/𝜅𝜋

L9(b)

≻
exp(𝜅↑𝛿) ≻ 1. Hence,

1©𝑚 ≥ 𝑁𝑚∑
ℰ𝑐𝑚

𝑠𝑗𝑚 log
𝜋𝑗𝑚
𝜅 ≥ 𝑁𝑚∑

ℰ𝑐𝑚

𝑠𝑗𝑚𝜅
↑
𝛿 = 𝑁𝑚(𝜅

↑
𝛿∑
ℰ𝑐𝑚

𝜋𝑗𝑚 − 𝜅↑𝛿∑
ℰ𝑐𝑚

(𝑠𝑗𝑚 − 𝜋𝑗𝑚)) ≕ 𝑁𝑚(𝜅
↑
𝛿𝜋ℰ𝑐𝑚 − 𝒯1𝑚).

Recall 𝜌ᵆ = 1 / min𝑚√𝑁𝑚, somax𝑚𝒯1𝑚 ≺ 𝜅 sincemax𝑚 ‖𝑠𝑚 − 𝜋𝑚‖ ≤ max𝑚 𝜌ᵆ√𝑁𝑚‖𝑠𝑚 − 𝜋𝑚‖
L12(d)

≺
𝜌ᵆ log𝑀

C,I

≺ 𝜅 / 𝜅↑𝛿. Thus, we can treat𝑁𝑚𝜋ℰ𝑐𝑚𝜅
↑
𝛿as a lower bound to 1©𝑚.

We now turn to 2©𝑚,49

ℙ[∃𝑚: | 2©𝑚−𝔼( 2©𝑚 ∣ 𝔸)| > 𝑁𝑚𝜋ℰ𝑐𝑚]
Bonferroni

≤ ∑
𝑚
ℙ[| 2©𝑚−𝔼( 2©𝑚 ∣ 𝔸)| > 𝑁𝑚𝜋ℰ𝑐𝑚]

G[iii], subg

≤ 2∑
𝑚
exp(−

𝑁2
𝑚𝜋 2

ℰ𝑐𝑚
2𝑁𝑚𝑐∗𝑧

) ≺ 1.

Further,

− 𝔼( 2©𝑚 ∣ 𝔸) = −𝐶𝑁𝑚𝔼(𝑦𝑖ℰ𝑐𝑚‖𝑧𝑖𝑚‖ ∣ 𝔸)

49Because the sum of i.i.d. subgaussians is subgaussian with OVP that is𝑁𝑚 times as large, 1©𝑚−𝔼( 2©𝑚 ∣ 𝔸) is subgaussian
(conditional on 𝔸) with OVP no greater than𝑁𝑚𝑐∗𝑧.
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= −𝐶𝑁𝑚𝔼(𝑦𝑖ℰ𝑐𝑚‖𝑧𝑖𝑚‖𝟙[‖𝑧𝑖𝑚‖ ≤ 𝜅↑𝛿/(2𝐶)] ∣ 𝔸) − 𝐶𝑁𝑚𝔼(𝑦𝑖ℰ𝑐𝑚‖𝑧𝑖𝑚‖𝟙[‖𝑧𝑖𝑚‖ > 𝜅↑𝛿/(2𝐶)] ∣ 𝔸)
Hölder

≥ −𝑁𝑚𝜅
↑
𝛿𝜋ℰ𝑐𝑚/2 − 𝐶𝑁𝑚(𝜋ℰ𝑐𝑚)1/𝑝1[𝔼(‖𝑧𝑖𝑚‖𝑝2)]1/𝑝2[ℙ(‖𝑧𝑖𝑚‖ > 𝜅↑𝛿/(2𝐶) ∣ 𝔸)]

1/𝑝3
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

will show to be negligible

, (36)

for any 𝑝1, 𝑝2, 𝑝3 > 0whose reciprocals sum to one. We now show that the last right-hand side term
in (36) is negligible compared to the first. We have, ℙ(‖𝑧𝑖𝑚‖ > 𝜅↑𝛿/(2𝐶) ∣ 𝔸)

G[iii]

≤ 2 exp[−𝜅↑2𝛿 /(8𝐶
2𝑐∗𝑧)]

C
= 2𝑀−𝑐∗𝜉/(𝐶

2𝑐∗𝑧),whereas𝜋ℰ𝑐𝑚
L9(b)

⪰ 𝜅, which by C decreasesmore slowly than any power of𝑀.
So up to negligible terms (uniformly in𝑚),𝑁𝑚𝜅

↑
𝛿𝜋ℰ𝑐𝑚/2 is an upper bound to | 2©𝑚| andhence a lower

bound to 1©𝑚 − 2©𝑚 (i.e., the ℰ𝑐𝑚 term).
Finally, the ℰ𝑚 term of ̂ℒ𝑚, i.e.∑𝑖∑ℰ𝑚

𝑦𝑖𝑗𝑚 log(𝜍𝑖𝑗𝑚/𝜍𝑖𝑗𝑚). We first show that left hand of (37) is
negligible, so we can simply consider∑𝑖∑ℰ𝑚

𝜍𝑖𝑗𝑚 log(𝜍𝑖𝑗𝑚/𝜍𝑖𝑗𝑚).

max
𝑚

sup
𝛩×ℿ

|
|
|

2
𝑁𝑚𝜅

↑
𝛿𝜋ℰ𝑐𝑚

∑
𝑖
∑
ℰ𝑚
(𝑦𝑖𝑗𝑚 − 𝜍𝑖𝑗𝑚) log

𝜍𝑖𝑗𝑚
𝜍𝑖𝑗𝑚

|
|
|

L10(b)

⪯ max
𝑚

sup
𝛩×ℿ

|
|
|
√𝑁𝑚(log𝑁)3

𝑁𝑚𝜅
↑
𝛿𝜋ℰ𝑐𝑚

|
|
|

L9(b)

⪯
𝜌ᵆ(log𝑁)3

𝜅↑𝛿𝜅𝜋

I[i]

≺ 1. (37)

Now, for each 𝑖, fixing 𝜍𝑖ℰ𝑐𝑚 andminimizing∑ℰ𝑚
𝜍𝑖𝑗𝑚 log(𝜍𝑖𝑗𝑚/𝜍𝑖𝑗𝑚)with respect to the 𝜍𝑖𝑗𝑚, 𝑗 ∈ ℰ𝑚,

subject to the adding up constraint∑ℰ𝑚
𝜍𝑖𝑗𝑚 = 1 − 𝜍𝑖ℰ𝑐𝑚 yields 𝜍∘𝑖𝑗𝑚 = 𝜍𝑖𝑗𝑚(1 − 𝜍𝑖ℰ𝑐𝑚)/𝜍𝑖ℰ𝑚. Hence,

∑
𝑖
∑
ℰ𝑚

𝜍𝑖𝑗𝑚 log
𝜍𝑖𝑗𝑚
𝜍𝑖𝑗𝑚

≥ ∑
𝑖
∑
ℰ𝑚

𝜍𝑖𝑗𝑚 log
𝜍𝑖𝑗𝑚
𝜍∘𝑖𝑗𝑚

= ∑
𝑖
𝜍𝑖ℰ𝑚 log

𝜍𝑖ℰ𝑚
1 − 𝜍𝑖ℰ𝑐𝑚

≥ ∑
𝑖
𝜍𝑖ℰ𝑚 log 𝜍𝑖ℰ𝑚

Jensen: 𝑡 log 𝑡 convex

≥ 𝑁𝑚�̚�ℰ𝑚 log �̚�ℰ𝑚
MVT

≥ −𝑁𝑚�̚�ℰ𝑐𝑚,

where �̚�𝑗𝑚 = 𝑁−1
𝑚 ∑𝑖 𝜍𝑖𝑗𝑚.

50 So ℰ𝑚 term is bounded below by−𝑁𝑚�̚�ℰ𝑐𝑚 up to negligible terms.
Finally, we show the ℰ𝑚 term is negligible relative to the ℰ𝑐𝑚 term by taking the ratio of their bounds:

max
𝑚

𝑁𝑚�̚�ℰ𝑐𝑚
𝑁𝑚𝜋ℰ𝑐𝑚𝜅

↑
𝛿
= 1
𝜅↑𝛿
(1 +max

𝑚

�̚�ℰ𝑐𝑚 − 𝜋ℰ𝑐𝑚
𝜋ℰ𝑐𝑚

)
L9(b)

⪯

1
𝜅↑𝛿
(1 +max

𝑚

|�̚�ℰ𝑐𝑚 − 𝜋ℰ𝑐𝑚|
𝜅𝜋

)
L12(d)

⪯ 1
𝜅↑𝛿
(1 +max

𝑚

log𝑀
√𝑁𝑚𝜅𝜋

)
I[i]

⪯ 1
𝜅↑𝛿

≺ 1,

where the rate inequalitymarked L12(d) uses L12(d) with 𝑠𝑗𝑚’s replaced with �̚�𝑗𝑚’s.
Sum ℰ𝑐𝑚 and ℰ𝑚 terms to show lim𝑀→∞ ℙ[inf𝛩×ℿ𝜅𝑐 ̂ℒ(𝜃, 𝜋) − ̂ℒ(𝜃 , 𝜋 ) ≤ 𝑐] = 0 for any 𝑐 > 0.

The following lemma establishes consistency of �̂�, ̂𝛿, ̂𝛽. The rate for �̂� is intermediate in that it is
superseded by theorem 2which shows asymptotic normality at a√𝑁𝑚 rate.
Lemma5 (Consistencyof �̂�, ̂𝛿, ̂𝛽). For𝓇𝑚 = 4√𝐼𝑚√(log 𝐼+)3+log𝑀, (a)max𝑚[𝑁𝑚𝓇−2𝑚 ‖�̂�𝑚−𝜋𝑚‖2] ≺ 1;
(b) ̂𝛽

𝑝
→ 𝛽 ; (c) ∀𝑚: ̂𝛿𝑚 − 𝛿𝑚 ≺ 1.

Proof. First (a). Let �̂�𝛥𝑚(𝜋𝑚) denote the vector �̂� with its 𝑚-th element replaced with 𝜋𝑚, so
�̂�𝛥𝑚(�̂�𝑚) = �̂�. By definition, �̂�𝑚 is the minimizer of �̂�[ ̂𝜃, �̂�𝛥𝑚(𝜋𝑚)] = ∑𝑚′≠𝑚

̂ℒ�̃�( ̂𝜃, �̂�𝑚′) +
̂ℒ𝑚( ̂𝜃, 𝜋𝑚) + �̂�[ ̂𝜃, �̂�𝛥𝑚(𝜋𝑚)].The first term does not depend on the choice of 𝜋𝑚, and can be ignored.
Wewill use �̂�𝛥𝑚(�̂�𝑚) to show that �̂�𝑚 is close to𝜋𝑚 by contradiction. Fix any constant 𝑐 > 0. Suppose

that for some𝑚,√𝑁𝑚‖�̂�𝑚 − 𝜋𝑚‖ > 𝑐𝓇𝑚. We show that �̂�[ ̂𝜃, �̂�𝛥𝑚(�̂�𝑚)] − �̂�[ ̂𝜃, �̂�𝛥𝑚(𝜋𝑚)] > 0with
probability approaching one, providing the contradiction with �̂�𝑚 being an optimum.

50For the MVT, 0 < 𝑡 ≤ 1, log 𝑡 = (𝑡 − 1)/ ̊𝑡 = −(1 − 𝑡)/ ̊𝑡 for 𝑡 ≤ ̊𝑡 ≤ 1. So 𝑡 log 𝑡 ≥ −(1 − 𝑡).
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First, noting that in (15)min(𝜋𝑚, 𝑠𝑚) ≤ �̊�𝑚, we have the following bounds,

2min
𝑚

̂ℒ◾
𝑚(�̂�𝑚)

(15)

≥ min
𝑚

𝑁𝑚‖�̂�𝑚 − 𝑠𝑚‖2 > 𝑐2min
𝑚

𝓇2𝑚 ≥ 𝑐2(log𝑀)2,

2max
𝑚

̂ℒ◾
𝑚(𝜋𝑚)

(15)

≤ max
𝑚

𝑁𝑚
‖𝑠𝑚 − 𝜋𝑚‖2

min(𝜋𝑚, 𝑠𝑚)
L12(d)

≺ (log𝑀)2.
(38)

Somin𝑚[ ̂ℒ◾
𝑚(�̂�𝑚) − ̂ℒ◾

𝑚(𝜋𝑚)] ≥ 𝑐2(log𝑀)2 / 4with probability approaching one.
Second, ̂ℒ⬩

𝑚(𝜃 , 𝜋𝑚) = 0 by construction. Since ̂ℒ⬩
𝑚 = ℒ⬩

𝑚+𝛥 ̂ℒ⬩
𝑚 andℒ⬩

𝑚( ̂𝜃, �̂�𝑚) ≥ ℒ⬩
𝑚(𝜃 , 𝜋𝑚) = 0,

min
𝑚

̂ℒ⬩
𝑚( ̂𝜃, �̂�𝑚)
𝓇2𝑚

≥ min
𝑚

ℒ⬩
𝑚( ̂𝜃, �̂�𝑚)
𝓇2𝑚

−max
𝑚

|𝛥 ̂ℒ⬩
𝑚( ̂𝜃, �̂�𝑚)|
𝓇2𝑚

L10(b)

≥ 0 − 𝑜𝑝(1).

Third, we provide a lower bound on the contribution �̂�( ̂𝜃, �̂�) − �̂�[ ̂𝜃, �̂�𝛥𝑚(𝜋𝑚)]. Recall that𝒫 ≤ 𝒫𝐵 =
𝐵(𝐵▿𝐵)−1𝐵▿, so expanding 𝛿( ̂𝜃, �̂�) around �̂�𝛥𝑚(𝜋𝑚),

‖𝒫{𝛿( ̂𝜃, �̂�) − 𝛿[ ̂𝜃, �̂�𝛥𝑚(𝜋𝑚)]}‖
MVT

≤ ‖(𝐵▿𝐵)−1/2𝐵▿𝔻𝜋( ̂𝜃, �̊�)[�̂� − �̂�𝛥𝑚(𝜋𝑚)]‖

= ‖(𝐵▿𝐵)−1/2𝐵▿𝑚𝔻𝜋𝑚( ̂𝜃, �̊�𝑚)(�̂�𝑚 − 𝜋𝑚)‖
F[iii],Schwarz

≤ 𝑂𝑝(𝑀−1/2)‖𝐵▿𝑚𝔻𝜋𝑚( ̂𝜃, �̊�𝑚)‖ ⋅ ‖�̂�𝑚 − 𝜋𝑚‖.

Recall𝒫𝒫 = 𝒫. Since for any 𝛿, ̄𝛿, |𝛿▿𝒫𝛿 − ̄𝛿▿𝒫 ̄𝛿| ≤ ‖𝒫(𝛿 − ̄𝛿)‖2 + 2‖𝒫(𝛿 − ̄𝛿)‖ ⋅ ‖𝒫𝛿‖,51

2|�̂�( ̂𝜃, �̂�) − �̂�[ ̂𝜃, �̂�𝛥𝑚(𝜋𝑚)]|

≤ 𝑂𝑝(𝑀−1)‖𝐵▿𝑚𝔻𝜋𝑚( ̂𝜃, �̊�𝑚)‖2 ⋅ ‖�̂�𝑚 − 𝜋𝑚‖2 + 2𝑂𝑝(𝑀−1/2)‖𝐵▿𝑚𝔻𝜋𝑚( ̂𝜃, �̊�𝑚)‖ ⋅ ‖�̂�𝑚 − 𝜋𝑚‖. (39)

Now,max𝑚 ‖𝐵▿𝑚𝔻𝜋𝑚( ̂𝜃, �̊�𝑚)‖2
L9(d)

⪯ 𝜅−3max𝑚 ‖𝐵𝑚‖
G[iv]

⪯ 𝜅−3√𝑀,which implies that the right-hand side
in (39) is bounded above by𝑂𝑝(𝑁−1

𝑚 𝜅−6)𝑁𝑚‖�̂�𝑚 − 𝜋𝑚‖2 + 𝑂𝑝(𝑁−1/2
𝑚 𝜅−3)√𝑁𝑚‖�̂�𝑚 − 𝜋𝑚‖

(38)

≺ ̂ℒ◾
𝑚(�̂�𝑚),

uniformly in𝑚 becausemax𝑚𝑁−1
𝑚 𝜅−6

C,I

≺ 1.
Combining the three terms, noting that ̂ℒ◾

𝑚(�̂�𝑚) − ̂ℒ◾
𝑚(𝜋𝑚) is dominant, we have �̂�[ ̂𝜃, �̂�𝛥𝑚(�̂�𝑚)] −

�̂�[ ̂𝜃, �̂�𝛥𝑚(𝜋𝑚)] > 0with probability one, showing the contradiction and completing (a).
Now (b). Recall that ̃𝐵 = 𝐵(𝐵▿𝐵)−1/2 such that ̂𝛽 = (𝑋▿𝒫𝐵𝑋)−1𝑋

▿𝒫𝐵𝛿( ̂𝜃, �̂�) = ( ̃𝐵▿𝑋)+ ̃𝐵▿𝛿( ̂𝜃, �̂�), and

‖ ̂𝛽 − 𝛽 ‖ = ‖( ̃𝐵▿𝑋)+ ̃𝐵▿𝛿( ̂𝜃, �̂�) − 𝛽 ‖ = ‖( ̃𝐵▿𝑋)+ ̃𝐵▿𝜉 + ( ̃𝐵▿𝑋)+ ̃𝐵▿[𝛿( ̂𝜃, �̂�) − 𝛿(𝜃 , 𝜋 )]‖
MVT
= ‖ ( ̃𝐵▿𝑋)+ ̃𝐵▿𝜉⏟⎵⎵⏟⎵⎵⏟

1©

+ ( ̃𝐵▿𝑋)+ ̃𝐵▿𝔻𝜃( ̊𝜃, �̊�)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
2©

( ̂𝜃 − 𝜃 )⏟⎵⏟⎵⏟
3©

+ ( ̃𝐵▿𝑋)+⏟⎵⏟⎵⏟
4©

̃𝐵▿𝔻𝜋( ̊𝜃, �̊�)(�̂� − 𝜋 )⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
5©

‖ ≺ 1,

where the last≺ holds because 1© ⪯ 𝑀−1/2 (standard linear IV error); 2© ⪯ 1 (multiple applications of
WLLN); 3© ≺ 1 (shown above); 4© ⪯ 𝑀−1/2 (multiple applications of WLLN); and,

5© = (𝐵▿𝐵)−1/2∑
𝑚
𝐵▿𝑚𝔻𝜋𝑚( ̊𝜃, �̊�𝑚)(�̂�𝑚 − 𝜋𝑚)

(a)

⪯ ‖(𝐵▿𝐵)−1/2∑
𝑚
𝐵▿𝑚𝔻𝜋𝑚( ̊𝜃, �̊�𝑚)‖

𝓇𝑚
√𝑁𝑚

⪯ √𝑀max
𝑚

𝓇𝑚
√𝑁𝑚

≺ 𝑀1/2,

so 4© × 5© ≺ 1. Finally, (c) follows from Slutsky’s theorem, ̂𝛿𝑚 = 𝛿𝑚( ̂𝜃, �̂�𝑚)
𝑝
→ 𝛿𝑚(𝜃 , 𝜋𝑚) = 𝛿𝑚.

B.2 Asymptotic normality
Lemma 6 (Negligibility of higher order terms in (16)). Statements (17a) to (17d) hold.

51Take 𝑎 = 𝒫𝛿, 𝑏 = 𝒫 ̄𝛿 and note ||‖𝑎‖2 − ‖𝑏‖2|| = ||‖𝑎 − 𝑏‖2 − 2(𝑎 − 𝑏)▿𝑎||. Apply triangle and Schwarz inequalities.
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Proof. First (17d). We first develop a lower bound for 𝛤−2𝜋 . sinceℒ⬩
𝜋𝜋 − ℒ𝜋𝜃ℒ

+
𝜃𝜃 ℒ𝜃𝜋 ≥ 0,52

𝛤−2𝜋 = 𝔼(ℒ𝜋𝜋 − ℒ𝜋𝜃ℒ
+

𝜃𝜃 ℒ𝜃𝜋) = 𝔼(ℒ◾
𝜋𝜋 + ℒ⬩

𝜋𝜋 − ℒ𝜋𝜃ℒ
+

𝜃𝜃 ℒ𝜃𝜋) ≥ 𝔼ℒ◾
𝜋𝜋.

Dividing ℒ◾
𝜋𝜋 into its diagonal blocks, ℒ◾

𝜋𝜋𝑚 = 𝑁𝑚(𝛱 −1
𝑚 + 𝜋 −1

0𝑚 𝜄𝜄▿) ≥ 𝑁𝑚𝕀. By L5(a), we may
consider only𝜋𝑚 ∈ ℿ𝓇

𝑚 = {𝜋𝑚: ‖𝜋𝑚 − 𝜋𝑚‖ ≤ 𝓇𝑚/√𝑁𝑚}. Noting the (𝑘, 𝑡) elements of ̂ℒ◾
𝜋𝜋𝑚 andℒ◾

𝜋𝜋𝑚

are𝑁𝑚(𝑠𝑘𝑚𝜋−2𝑘𝑚𝟙[𝑘 = 𝑡] + 𝑠0𝑚𝜋−20𝑚) and𝑁𝑚(𝜋 −1
𝑘𝑚 𝟙[𝑘 = 𝑡] + 𝜋 −1

0𝑚 ) respectively,

max
𝑚

sup
ℿ𝓇𝑚

[𝑁−1
𝑚 ‖ ̂ℒ◾

𝜋𝜋𝑚(𝜋𝑚) − ℒ◾
𝜋𝜋𝑚(𝜋𝑚)‖] ≤ 2max

𝑚,𝑗
sup
ℿ𝓇𝑚

|
|
|
𝑠𝑗𝑚
𝜋2𝑗𝑚

− 1
𝜋𝑗𝑚

|
|
|

= 2max
𝑚,𝑗

sup
ℿ𝓇𝑚

|
|
|

(𝑠𝑗𝑚 − 𝜋𝑗𝑚)𝜋𝑗𝑚 − (𝜋𝑗𝑚 − 𝜋𝑗𝑚)𝜋𝑗𝑚 − (𝜋𝑗𝑚 − 𝜋𝑗𝑚)𝜋𝑗𝑚
𝜋2𝑗𝑚𝜋𝑗𝑚

|
|
|
≺ 1.

So max ̊𝑡∈[0,1] ‖𝛤𝜋{ ̂ℒ◾
𝜋𝜋[𝛾( ̊𝑡)] − ℒ◾

𝜋𝜋}𝛤𝜋‖ ≤ max ̊𝑡∈[0,1] ‖(𝔼ℒ◾
𝜋𝜋)−1/2{ ̂ℒ◾

𝜋𝜋[𝛾( ̊𝑡)] − ℒ◾
𝜋𝜋}(𝔼ℒ◾

𝜋𝜋)−1/2‖
which is the norm of a block diagonal matrix with blocks ≺ max𝑚[𝑁−1/2

𝑚 ‖𝕀‖ × 𝑁𝑚 × 𝑁−1/2
𝑚 ‖𝕀‖] ⪯ 1,

establishing (17d).
The remaining three results are similar to each other and are shown in L11.

Lemma 7 (Denominator approximation). At the truth, 𝛤𝜃𝒬𝜃𝜃𝛤𝜃
𝑝
→ 𝕀.

Proof. Wewill show the equivalent result𝛤𝜃(𝒬𝜃𝜃−𝛤−2𝜃 )𝛤𝜃 ≺ 1. Recall that𝒬𝜃𝜃 =
1©

⏞𝛺𝜃𝜃−

2©

⏞⎴⎴⎴⏞⎴⎴⎴⏞𝛺𝜃𝜋𝛺−1
𝜋𝜋𝛺𝜋𝜃,

Wewill separate the𝛺’s into their constituent partsℒ,𝛷 and then drop negligible terms. We begin with
2©, definingℛ = ℒ−1

𝜋𝜋ℒ𝜋𝜃,

1. Establish that 2© ≃ 𝛺𝜃𝜋ℒ−1
𝜋𝜋𝛺𝜋𝜃 −𝛺𝜃𝜋ℒ−1

𝜋𝜋𝛷𝜋𝜋ℒ−1
𝜋𝜋𝛺𝜋𝜃 ≕ 6© − 7©;

2. Show that 6© ≃ ℒ𝜃𝜋ℒ−1
𝜋𝜋ℒ𝜋𝜃 +ℛ▿𝛷𝜋𝜃 + 𝛷𝜃𝜋ℛ;

3. Show that 7© ≃ ℛ▿𝛷𝜋𝜋ℛ

Now define𝒬ℒ
𝜃𝜃 = ℒ𝜃𝜃 − ℒ𝜃𝜋ℒ−1

𝜋𝜋ℒ𝜋𝜃. Since 1© = ℒ𝜃𝜃 + 𝛷𝜃𝜃, we have𝒬𝜃𝜃 ≃ 𝒬ℒ
𝜃𝜃 + 𝛷𝜃𝜃 − ℛ▿𝛷𝜋𝜃 −

𝛷𝜋𝜃ℛ +ℛ▿𝛷𝜋𝜋ℛ. We now proceedwith the terms of the right hand side:

4. Show that𝒬ℒ
𝜃𝜃 ≃ 𝔼𝒬ℒ

𝜃𝜃;

5. Show that𝛷𝜃𝜃 ≃ 𝑀𝛯𝜃𝒜𝛯
▿
𝜃 ,𝛷𝜃𝜋ℛ ≃ 𝑀𝛯𝜃𝒜𝛯

▿
𝜋, andℛ

▿𝛷𝜋𝜋ℛ ≃ 𝑀𝛯𝜋𝒜𝛯
▿
𝜋;

6. That produces𝒬𝜃𝜃 ≃ 𝔼(ℒ𝜃𝜃 − ℒ𝜃𝜋ℒ−1
𝜋𝜋ℒ𝜋𝜃) + 𝑀𝛯𝒜𝛯▿ = 𝛤−2𝜃 , as promised.

Themost complicatedpart is step1. Let𝐴 = 𝔻▿
𝜋 ̃𝐵( ̃𝐵▿𝒫 ̃𝐵)1/2 such that𝛷𝜋𝜋 = 𝔻▿

𝜋𝒫𝔻𝜋 = 𝔻▿
𝜋𝒫𝐵𝒫𝒫𝐵𝔻𝜋 =

𝐴𝐴▿. Applying theWoodburymatrix identity to (ℒ𝜋𝜋 + 𝐴𝕀𝐴▿)−1,

𝛺−1
𝜋𝜋 = (ℒ𝜋𝜋 + 𝛷𝜋𝜋)−1 = ℒ−1

𝜋𝜋 − ℒ−1
𝜋𝜋𝐴[𝕀 +

3©

⏞⎴⏞⎴⏞𝐴▿ℒ−1
𝜋𝜋𝐴]−1𝐴

▿ℒ−1
𝜋𝜋

≃ ℒ−1
𝜋𝜋 − ℒ−1

𝜋𝜋𝐴𝐴
▿ℒ−1

𝜋𝜋 = ℒ−1
𝜋𝜋 − ℒ−1

𝜋𝜋𝛷𝜋𝜋ℒ−1
𝜋𝜋, (40)

because 3© ≺ 1 as we now show,

52This is easy to see for the case when𝐻ℒ⬩, defined in (19), is full rank because (ℒ⬩
𝜋𝜋 −ℒ𝜋𝜃ℒ

+
𝜃𝜃ℒ𝜃𝜋)−1 is a main diagonal

block of 𝐻 −1
ℒ⬩ > 0. Using the Moore Penrose inverse covers the case when𝐻ℒ⬩ is not full rank.
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3© = ( ̃𝐵▿𝒫 ̃𝐵⏟
≤�̃�▿�̃�=𝕀

)1/2
(𝐵▿𝐵)−1/2𝐵▿

⏞̃𝐵▿𝔻𝜋ℒ−1
𝜋𝜋𝔻

▿
𝜋 ̃𝐵( ̃𝐵▿𝒫 ̃𝐵)1/2 = 𝑂𝑝(1)(𝐵

▿𝐵)−1/2
4©

⏞⎴⎴⎴⏞⎴⎴⎴⏞𝐵▿𝔻𝜋ℒ−1
𝜋𝜋𝔻

▿
𝜋𝐵(𝐵

▿𝐵)−1/2𝑂𝑝(1)

= 𝑂𝑝(𝑀−1/2) × 4© × 𝑂𝑝(𝑀−1/2). (41)

Noting thatℒ−1
𝜋𝜋𝑚 ≤ ℒ◾−1

𝜋𝜋𝑚 = 𝑁−1
𝑚 (𝛱𝑚 − 𝜋𝑚𝜋

▿
𝑚 ) becauseℒ⬩

𝜋𝜋𝑚 ≥ 0,

4© = ∑
𝑚
𝐵▿𝑚𝔻𝜋𝑚ℒ−1

𝜋𝜋𝑚𝔻
▿
𝜋𝑚𝐵𝑚 ⪯ ∑

𝑚

1
𝑁𝑚

𝐵▿𝑚𝔻𝜋𝑚 (𝛱𝑚 − 𝜋𝑚𝜋
▿

𝑚 )⏟⎵⎵⎵⏟⎵⎵⎵⏟
≤𝕀

𝔻▿
𝜋𝑚𝐵𝑚 ⪯ ∑

𝑚

1
𝑁𝑚

𝐵▿𝑚𝔻𝜋𝑚𝔻
▿
𝜋𝑚𝐵𝑚

≃ ∑
𝑚

1
𝑁𝑚

𝔼(𝐵▿𝑚𝔻𝜋𝑚𝔻
▿
𝜋𝑚𝐵𝑚) ∼ ∑

𝑚

1
𝑁𝑚

≺ 1, (42)

it follows that 3© ≺ 𝑀−1, which establishes the≃ in (40). Substituting (40) into 2© completes step 1.
For step 2, substitute𝛺𝜃𝜋 = ℒ𝜃𝜋 + 𝛷𝜃𝜋 andmultiply out,

6© = ℒ𝜃𝜋ℒ−1
𝜋𝜋ℒ𝜋𝜃 +ℛ▿𝛷𝜋𝜃 + 𝛷𝜃𝜋ℛ +

8©

⏞⎴⎴⏞⎴⎴⏞𝛷𝜃𝜋ℒ−1
𝜋𝜋𝛷𝜋𝜃,

so it suffices to show that 8© is negligible. We have,

8© = 𝔻▿
𝜃𝒫𝔻𝜋ℒ−1

𝜋𝜋𝔻
▿
𝜋𝒫𝒟𝜃 =

⪯1

⏞⎴⎴⎴⏞⎴⎴⎴⏞𝔻▿
𝜃𝒫𝐵(𝐵

▿𝐵)−1 𝐵▿𝔻𝜋ℒ−1
𝜋𝜋𝔻

▿
𝜋𝐵

⪯1

⏞⎴⎴⎴⏞⎴⎴⎴⏞(𝐵▿𝐵)−1𝐵▿𝒫𝔻𝜃 ≺ 1, (43)

which follows from 𝐵▿𝔻𝜋ℒ−1
𝜋𝜋𝔻

▿
𝜋𝐵 = 4© ≺ 1 as shown in (42).

Moving on to step 3, recall 7© = 𝛺𝜃𝜋ℒ−1
𝜋𝜋𝛷𝜋𝜋ℒ−1

𝜋𝜋𝛺𝜋𝜃, wemust show that

7© −ℛ▿𝛷𝜋𝜋ℛ =

9©

⏞⎴⎴⎴⏞⎴⎴⎴⏞ℛ▿𝛷𝜋𝜋ℒ−1
𝜋𝜋𝛷𝜋𝜃+𝛷𝜃𝜋ℒ−1

𝜋𝜋𝛷𝜋𝜋ℛ + 𝛷𝜃𝜋ℒ−1
𝜋𝜋𝛷𝜋𝜋ℒ−1

𝜋𝜋𝛷𝜋𝜃, (44)

is negligible. Starting with 9©, we have,𝛷𝜋𝜋 = 𝔻▿
𝜋𝒫𝔻𝜋 = 𝔻▿

𝜋𝒫𝐵𝒫𝒫𝐵𝔻𝜋. Recalling𝒫𝐵 = 𝐵(𝐵▿𝐵)−1𝐵▿,

9© =

𝑝
→𝛯𝜋

⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞ℒ𝜃𝜋ℒ−1
𝜋𝜋𝔻

▿
𝜋𝐵

𝑀 (𝐵
▿𝐵
𝑀 )

−1𝐵▿𝒫𝐵
𝑀 (𝐵

▿𝐵
𝑀 )

−1
[𝐵▿𝔻𝜋ℒ−1

𝜋𝜋𝔻
▿
𝜋𝐵]

𝑝
→𝛯▿

𝜃

⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞
(𝐵

▿𝐵
𝑀 )

−1𝐵▿𝒫𝐵
𝑀 (𝐵

▿𝐵
𝑀 )

−1𝐵▿𝔻𝜃
𝑀 . (45)

Hence, 9© is negligible since like before, 𝐵▿𝔻𝜋ℒ−1
𝜋𝜋𝔻

▿
𝜋𝐵 = 4© ≺ 1. The second term of (44) is the

transpose of 9©. Following analogous steps, the final term of (44)≃ 𝛯▿𝜃 4©𝛯𝜃 ≺ 1, concluding step 3.
Collecting terms from above, we nowhave,𝒬𝜃𝜃 ≃ 𝒬ℒ

𝜃𝜃+𝛷𝜃𝜃−ℛ
▿𝛷𝜋𝜃−𝛷𝜋𝜃ℛ+ℛ▿𝛷𝜋𝜋ℛ. For step

4, let 𝕌𝑚 ≔ 𝛤𝜃[𝒬ℒ
𝜃𝜃𝑚 − 𝔼(𝒬ℒ

𝜃𝜃𝑚 ∣ 𝐼𝑚)]𝛤𝜃, where𝒬ℒ
𝜃𝜃𝑚 = ℒ𝜃𝜃𝑚 − ℒ𝜃𝜋𝑚ℒ−1

𝜋𝜋𝑚ℒ𝜋𝜃𝑚 and 𝕌 ≔ ∑𝑚 𝕌𝑚,

the result follows from the fact that for any fixed vector 𝑣, 𝔼‖𝕌𝑣‖2
D

≺ 1. This completes step 4.
Now, step 5. Wewill show the second result,ℛ▿𝛷𝜋𝜃 ≃ 𝑀𝛯𝜋𝒜𝛯

▿
𝜃 . We have,

ℛ▿𝛷𝜋𝜃 = ℒ𝜃𝜋ℒ−1
𝜋𝜋𝔻

▿
𝜋𝒫𝔻𝜃 = ℒ𝜃𝜋ℒ−1

𝜋𝜋𝔻
▿
𝜋

=𝒫

⏞⎴⎴⏞⎴⎴⏞𝒫𝐵𝒫𝒫𝐵𝒫𝒫𝐵𝔻𝜃 =

𝑀

𝑝
→𝛯𝜋

⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞ℒ𝜃𝜋ℒ−1
𝜋𝜋𝔻

▿
𝜋𝐵

𝑀 (𝐵
▿𝐵
𝑀 )

−1𝐵▿𝒫𝐵
𝑀 (𝐵

▿𝐵
𝑀 )

−1

𝑝
→𝒜
⏞𝐵▿𝐵
𝑀

𝑝
→𝛯▿

𝜃

⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞
(𝐵

▿𝐵
𝑀 )

−1𝐵▿𝒫𝐵
𝑀 (𝐵

▿𝐵
𝑀 )

−1𝐵▿𝔻𝜃
𝑀 ≃ 𝑀𝛯𝜋𝒜𝛯

▿
𝜃 .

The other two results follow by analogously applying𝒫 = 𝒫𝐵𝒫𝒫𝐵𝒫𝒫𝐵 and are left to the reader.
Finally, step 6, collecting the above results we have,
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𝒬𝜃𝜃 ≃ 𝔼𝒬ℒ
𝜃𝜃 + 𝛯𝜃𝒜𝛯

▿
𝜃 − 𝛯𝜃𝒜𝛯

▿
𝜋 − 𝛯𝜋𝒜𝛯

▿
𝜃 + 𝛯𝜋𝒜𝛯

▿
𝜋 = 𝔼𝒬ℒ

𝜃𝜃 + 𝛯𝒜𝛯▿ = 𝛤−2𝜃 .

Lemma 8 (Numerator normality). Evaluated at the truth, for ̂𝓆𝜃 =
a©
⏞̂𝛺𝜃−

b©

⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏞𝛺𝜃𝜋𝛺−1
𝜋𝜋⏟⎵⏟⎵⏟

ℛ𝛺▿

[�̂�⬩
𝜋 − ℒ◾

𝜋𝜋(𝑠 − 𝜋 )⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
̂𝓇𝛺

],
𝛤𝜃 ̂𝓆𝜃

𝑑
→ 𝑁(0, 𝒱𝜃).

Proof. Wewill first expand the𝛺’s and �̂�’s into their constituent parts and then drop negligible terms
before applying a central limit theorem. The steps of this proof are as follows, we begin with b©:

a. Show that b© ≃ 𝛺𝜃𝜋ℒ−1
𝜋𝜋 ̂𝓇𝛺 −𝛺𝜃𝜋ℒ−1

𝜋𝜋𝛷𝜋𝜋ℒ−1
𝜋𝜋 ̂𝓇𝛺 ≕ c© − d©;

b. Recalling that ℛ = ℒ−1
𝜋𝜋ℒ𝜋𝜃 and defining ̂𝓇 = ̂𝓇𝛺 − �̂�𝜋 = ̂ℒ⬩

𝜋 − ℒ◾
𝜋𝜋(𝑠 − 𝜋 ), show that

c© ≃ ℛ▿ ̂𝓇 + ℛ▿�̂�𝜋;

c. Show that 𝛤𝜃 × d© ≺ 1.

Use the above stepswith a© = �̂�𝜃 = ̂ℒ𝜃+�̂�𝜃 to rearrange ̂𝓆𝜃 ≃ ( ̂ℒ𝜃−ℛ
▿ ̂𝓇)+(�̂�𝜃−ℛ

▿�̂�𝜋). Continuing,

d. Show �̂�𝜃 ≃ 𝛯𝜃𝐵
▿𝜉,ℛ▿�̂�𝜋 ≃ 𝛯𝜋𝐵

▿𝜉; so ̂𝓆𝜃 ≃ ∑𝑚( ̂ℒ𝜃𝑚 − ℒ𝜃𝜋𝑚ℒ−1
𝜋𝜋𝑚 ̂𝓇𝑚 + 𝛯𝐵▿𝑚𝜉𝑚) ≕ ∑𝑚 𝕋𝑚;

e. Use a central limit theorem to establish that 𝛤𝜃 ̂𝓆𝜃
𝑑
→𝒩[0, lim𝑀→∞∑𝑚(𝛤𝜃𝒱𝕋𝑚𝛤𝜃)] = 𝒩(0, 𝒱 ̂𝜃).

Wewill establish these results in order, reusing results from the proof of L7 where helpful. For instance,
in step a we re-use (40),𝛺−1

𝜋𝜋 ≃ ℒ−1
𝜋𝜋 − ℒ−1

𝜋𝜋𝛷𝜋𝜋ℒ−1
𝜋𝜋.

For step b, we have c© = ℛ▿ ̂𝓇𝛺 + 𝛷𝜃𝜋ℒ−1
𝜋𝜋 ̂𝓇𝛺 ≕ ℛ▿ ̂𝓇𝛺 + e©.To show that e© vanishes, we first show

that for any𝔸-measurable𝐾,
‖𝐾▿ ̂𝓇𝛺‖ ⪯ ‖𝐾▿𝛺𝜋𝜋𝐾‖1/2. (46)

To see this, note𝐾▿ ̂𝓇𝛺 = 𝐾▿ ̂𝓇 + 𝐾▿�̂�𝜋. Proceeding term by term, 𝔼(‖𝐾▿ ̂𝓇‖2 ∣ 𝔸) = 𝐾▿ℒ𝜋𝜋𝐾 because

𝔼( ̂𝓇 ̂𝓇▿ ∣ 𝔸) = 𝐸[ ̂ℒ⬩
𝜋 ̂ℒ⬩▿

𝜋 + ℒ◾
𝜋𝜋(𝑠 − 𝜋 )(𝑠 − 𝜋 )▿ℒ◾

𝜋𝜋 ∣ 𝔸] = ℒ⬩
𝜋𝜋 + ℒ◾

𝜋𝜋 = ℒ𝜋𝜋,

where the first equality follows from 𝔼[(𝑠 − 𝜋 ) ̂ℒ⬩▿
𝜋 ∣ 𝔸] = 053 and the second uses the information

matrix equalities for ℒ⬩ and ℒ◾. For the second term, 𝐾▿�̂�𝜋 = 𝐾▿𝔻▿
𝜋𝒫𝜉 = 𝐾▿𝔻▿

𝜋𝒫𝐵(𝐵
▿𝐵)−1𝐵▿𝜉.

Since𝕍[𝐵▿𝜉] ⪯ 𝐵▿𝐵 by F[ii] and G[iv], ‖𝐾▿�̂�𝜋‖2 ⪯ 𝐾▿𝔻▿
𝜋𝒫𝔻𝜋𝐾 = 𝐾▿𝛷𝜋𝜋𝐾,which establishes (46).

Applying this result is sufficient for e© to vanish since setting𝐾 = ℒ−1
𝜋𝜋𝛷𝜋𝜃 we have,

𝐾▿𝛺𝜋𝜋𝐾 = 𝛷𝜃𝜋ℒ−1
𝜋𝜋(ℒ𝜋𝜋 + 𝛷𝜋𝜋)ℒ−1

𝜋𝜋𝛷𝜋𝜃 =

8© in (43)

⏞⎴⎴⏞⎴⎴⏞𝛷𝜃𝜋ℒ−1
𝜋𝜋𝛷𝜋𝜃+

last term in (44)

⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞𝛷𝜃𝜋ℒ−1
𝜋𝜋𝛷𝜋𝜋ℒ−1

𝜋𝜋𝛷𝜋𝜃 ≺ 1,

which completes step b.
Now step c. Take𝐾 = ℒ−1

𝜋𝜋𝛷𝜋𝜋ℒ−1
𝜋𝜋𝛺𝜋𝜃 in (46) and note that d© = 𝐾▿ ̂𝓇𝛺. First,

λλλmax(ℒ−1/2
𝜋𝜋 𝛷𝜋𝜋ℒ−1/2

𝜋𝜋 ) = λλλmax(ℒ−1/2
𝜋𝜋 𝐴𝐴▿ℒ−1/2

𝜋𝜋 ) = λλλmax(𝐴
▿ℒ−1

𝜋𝜋𝐴) = λλλmax( 3©)
(41)

≺ 𝑀−1, (47)

where𝐴 is defined in L7, step 1. Now, write𝐾▿𝛺𝜋𝜋𝐾 = 𝐾▿ℒ𝜋𝜋𝐾 + 𝐾▿𝛷𝜋𝜋𝐾 and note that

𝐾▿𝛷𝜋𝜋𝐾 = 𝐾▿ℒ1/2
𝜋𝜋(ℒ−1/2

𝜋𝜋 𝛷𝜋𝜋ℒ−1/2
𝜋𝜋 )ℒ1/2

𝜋𝜋𝐾
(47)

≺ 1
𝑀𝐾▿ℒ𝜋𝜋𝐾,

53For any 𝑘,𝑚, 𝔼[(𝑠𝑘𝑚 − 𝜋𝑘𝑚)ℒ̂⬩▿
𝜋𝑚(𝜃 ,𝜋𝑚) ∣ 𝔸] = 𝐼𝑚∑𝑗 𝔼[(𝑦𝑖𝑘𝑚 − 𝜋𝑘𝑚)𝑦𝑖𝑗𝑚𝛥ℓ𝜋𝑖𝑗𝑚 ∣ 𝔸] = 𝐼𝑚{𝔼[𝜎𝑖𝑘𝑚𝛥ℓ𝜋𝑖𝑘𝑚 ∣

𝔸] − 𝜋𝑘𝑚∑𝑗𝔼[𝜎𝑖𝑗𝑚𝛥ℓ𝜋𝑖𝑗𝑚 ∣ 𝔸]} = 0, noting that 𝜎𝑖𝑗𝑚𝛥ℓ𝜋𝑖𝑗𝑚 = 𝜎𝜋𝑖𝑗𝑚 − 𝜎𝑖𝑗𝑚𝜎𝜋𝑗𝑚/𝜎𝑗𝑚.
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such that𝐾▿𝛷𝜋𝜋𝐾 is negligible relative to𝐾
▿ℒ𝜋𝜋𝐾.

𝐾▿ℒ𝜋𝜋𝐾 = 𝛺𝜃𝜋ℒ−1
𝜋𝜋𝛷𝜋𝜋ℒ−1

𝜋𝜋𝛷𝜋𝜋ℒ−1
𝜋𝜋𝛺𝜋𝜃

(47)

≺ 1
𝑀𝛺𝜃𝜋ℒ−1

𝜋𝜋𝛷𝜋𝜋ℒ−1
𝜋𝜋𝛺𝜋𝜃

L7 step 3
≃ 1
𝑀ℛ▿𝛷𝜋𝜋ℛ

L7 step 5

⪯ 𝛯𝜋𝒜𝛯
▿
𝜋 ≺ 1,

and hence d© ≺ 1. Since 𝛤𝜃 ≺ 1 by definition, this completes step c.
We now have ̂𝓆𝜃 ≃ ( ̂ℒ𝜃 − ℛ▿ ̂𝓇) + (�̂�𝜃 − ℛ▿�̂�𝜋).We continue with step d. First, using 𝛯𝜃 and 𝛯𝜋

defined in theorem 2, step 2, �̂�𝜃 = 𝔻▿
𝜃𝒫𝜉 = 𝔻▿

𝜃𝒫𝐵𝒫𝐵(𝐵
▿𝐵)−1𝐵▿𝜉 ≃ 𝛯𝜃𝐵

▿𝜉, andℛ▿�̂�𝜋 = ℛ▿𝔻▿
𝜋𝒫𝜉 =

ℛ▿𝔻▿
𝜋𝒫𝐵𝒫𝐵(𝐵

▿𝐵)−1𝐵▿𝜉 ≃ 𝛯𝜋𝐵
▿𝜉, analogous to (45). This completes step d. So we canwrite,

̂𝓆𝜃 ≃ ∑
𝑚
( ̂ℒ𝜃𝑚 − ℒ𝜃𝜋𝑚ℒ−1

𝜋𝜋𝑚 ̂𝓇𝑚 + 𝛯𝐵▿𝑚𝜉𝑚) = ∑
𝑚
𝕋𝑚. (48)

Finally, step e. Let ̃𝒱𝜃 = 𝛤𝜃∑𝑚 𝕍(𝕋𝑚)𝛤𝜃. ByD, {𝕋𝑚} are independent and so are {𝒯𝑚} = { ̃𝒱−1/2
𝜃 𝛤𝜃𝕋𝑚}.

We only need to verify the Lindeberg condition (Davidson, 1994, 23.6), which in view of our as-
sumptions, notably I[ii] is not in doubt. Hence, ∑𝑚𝒯𝑚

𝑑
→ 𝒩(0, 𝕀). Thus, by Cramér’s theorem,

𝛤𝜃 ̂𝓆𝜃 = ̃𝒱1/2
𝜃 𝛤𝜃∑𝑚 𝕋𝑚

𝑑
→ 𝑁(0, 𝒱𝜃), where

𝒱𝜃 = lim
𝑀→∞

(𝛤𝜃∑
𝑚
𝕍𝕋𝑚𝛤𝜃) = lim

𝑀→∞
[𝛤𝜃(𝔼𝒬ℒ

𝜃𝜃 + 𝛯𝔼(𝐵▿𝑉𝜉𝐵)𝛯
▿)𝛤𝜃].
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C Identifying unobserved heterogeneity frommicro data
In this appendix we discuss a specific example to illustrate the underlying variation in the micro

sample that provides identification of 𝜃𝜈 in our parametricmodel. This example represents a special
case of the nonparametric arguments in Berry andHaile (2024).
Consider a simple case of a singlemarket with two products and an outside good. There is a single

demographic variable, so 𝑧𝑖 is a scalar.54 Utility for product 𝑗 is

𝑢𝑖𝑗 = 𝛿𝑗 + 𝜃𝑧𝑥(1)𝑗 𝑧𝑖 + 𝜃𝜈𝑥(2)𝑗 𝜈𝑖 + 𝜀𝑖𝑗,

where the product characteristics are 𝑥(1) = [1 0]▿, 𝑥(2) = [1 1]▿.The demographic variable shifts
utility of good 1 only, and the single random coefficient induces correlation in the utilities of the two
inside goods. As is typical, in this example 𝜈𝑖 has a standard normal distribution.
Suppose we observe a random sample of microdata {𝑦𝑖⋅, 𝑧𝑖}. The micro data nonparametrically

identifies the function �̃�𝑧 = ℙ(𝑦𝑖⋅ = 1|𝑧, 𝑥). Fig. 8 plots this function over 𝑧 ∈ [−1, 1] for three different
parametrization of themodel, namely 𝜃𝜈 = {0, 1, 2}with 𝛿 = (−.25, 25)▿ and 𝜃𝑧 = 2. Intuitively, the
share of good 1 rises with 𝑧 in all three panels. However, the slope differs based on the value of 𝜃𝜈. The
other notable difference is that as 𝜃𝜈 increases, 𝑧 has a larger impact on the share of good 2, �̃�𝑧2 , relative
to the outside good, �̃�𝑧0 . Since the utilities of goods 1 and 2 are increasingly correlated as 𝜃𝜈 grows, it
becomesmore likely that consumers are on themargin between the two inside goods than between
good 1 and the outside good. Therefore, a slight increase in 𝑧 induces relativelymore substitution away
from good 2 than the outside good.
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Figure 8:Conditional shares �̃�𝑧 are identified by the micro sample.

We can also nonparametrically identify the derivatives of �̃�𝑧. Given our special case we have, d𝑧�̃�𝑧𝑗 =
𝜃𝑧𝜕ᵆ1𝜋

𝑧
𝑗 ,where we employ the fact that 𝑧 only affects the utility of good 1. Taking a ratio of these gives

us diversion with respect to utility from good 1 to good 2 and from good 1 to the outside good for every
value of 𝑧, i.e., for 𝑗 = {0, 2},

d𝑧�̃�𝑧𝑗
d𝑧�̃�𝑧1

=
𝜕ᵆ1𝜋

𝑧
𝑗

𝜕ᵆ1𝜋
𝑧
1
= 𝐷𝑧

1𝑗. (49)

Equation (49) provides intuitive variationwith which to identify 𝜃𝜈. To see this, recall that when 𝜃𝜈 = 0
then we havemultinomial logit demand. This implies that diversion is a function of conditional choice
probabilities: if 𝜃𝜈 = 0 then 𝐷𝑧𝑖

1𝑗 = 𝜋𝑧𝑗 /(1 − 𝜋𝑧1 ). Moreover, due to the independence of irrelevant
alternatives property, diversion will be constant over 𝑧.

54Since there is a single market in this section, we drop𝑚 from the notation.
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Figure 9:Diversion and Demographics

Fig. 9 illustrates the implications of diversion for different 𝜃𝜈. The first panel depicts diversion with
respect to utility from good 1 to good 2 as a function of 𝑧, i.e.𝐷𝑧

12. As predicted, diversion is constant in 𝑧
for 𝜃𝜈 = 0, yet it is decreasing for 𝜃𝜈 > 0. The reason for the decline can be seen in fig. 8: as 𝑧 increases,
the conditional share of good 2 falls more rapidly for 𝜃𝜈 > 0, so a larger proportion of switchersmust
come from the outside good in response to an increase in 𝑧.
The second panel of fig. 9 plots the logit-implied diversion ratios computed from conditional shares

generated by the three parameterizations of 𝜃𝜈. If 𝜃𝜈 = 0, we exactly reproduce the constant diversion
rate from the first panel. For 𝜃𝜈 > 0, we see decreasing functions that are below the line for 𝜃𝜈 = 0. The
reason these functions are decreasing is the same as for the first panel. The reason the level of the logit-
predicted diversion decreases in 𝜃𝜈 is that diversion between goods 1 and 2 is more than proportional to
shares when 𝜃𝜈 > 0. An illustration of diversion between good 1 and the outside good would produce a
mirror image since increasing 𝜃𝜈 weakens diversion between these goods.
The third panel of fig. 9 takes the difference of the first two panels. As 𝜃𝜈 rises, the logit model under-

predicts diversion between the two inside goods. Moreover, the degree of under-prediction varies in
𝑧. This suggests moments with which to identify 𝜃𝜈 by comparing the estimated diversion rate to the
model-predicted diversion rate. In this exercise we have fixed the values of the other parameters 𝜃𝑧 and
𝛿. In practice, the describedmoments for 𝜃𝜈 would need to be paired with commonly usedmoments to
identify 𝜃𝑧, 𝛿; e.g., matchingmarket shares for 𝛿 andmatching correlations between demographics and
product characteristics for 𝜃𝑧. An advantage of the likelihood approach to usingmoments is that it fully
exploits all of the information in themicro sample.
So farwehave focused on a special case inwhich it is clear that themicro samplehas somuchvaluable

information to identify 𝜃𝜈 that the ̂𝜒 term of our estimator would be redundant. To see a case where ̂𝜒
is necessary for identification, simply set 𝜃𝑧 = 0 in our example. Now 𝜕𝑧�̃�𝑧𝑗 = 0 and themoments we
have suggested are undefined and no longer informative.
In our example, we specified 𝑧 to shift the utility of exactly one good and restricted 𝜃𝜈 to have

dimensionone. There aremoregeneral conditions for identificationof 𝜃𝜈 fromconsumerdemographics.
𝜇𝑧 is typically specified as a linear combination of interactions between product characteristics and
consumer demographics, e.g.,

𝜇𝑧(𝑥𝑗, 𝑧𝑖; 𝜃𝑧) = 𝑥▿𝑗 𝛩𝑧𝑧𝑖 = ∑
𝑘
∑
𝑑
𝜃𝑧(𝑘,𝑑)𝑥𝑘𝑗 𝑧

𝑑
𝑖 ,

where𝛩𝑧 is amatrix with elements 𝜃𝑧(𝑘,𝑑). With this formwe have,
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d𝑧𝑑�̃�𝑧𝑗 =
𝐾
∑
𝑘=1

𝐽
∑
ℓ=1

𝜃𝑧(𝑘,𝑑)𝑥𝑘ℓ𝜕ᵆℓ𝜋
𝑧
𝑗 . (50)

Inmatrix notation, (50) can be written as

d𝑧▿�̃�𝑧 = 𝜕ᵆ▿𝜋𝑧𝜕𝑧▿𝑢 = 𝜕ᵆ▿𝜋𝑧𝜕𝑧▿𝜇𝑧 = 𝜕ᵆ▿𝜋𝑧𝑋
▿𝛩𝑧. (51)

Thus, only if 𝑋▿𝛩𝑧 hasmaximumcolumn rank, does there exist a unique 𝜕ᵆ▿𝜋𝑧 that solves (51). In other
words, if this rank condition holds, thenwe can recover the substitutionmatrix for all 𝑧 from 𝜃𝑧 and the
data. Flexibility of the substitutionmatrix is the primarymotivation for the introduction of random
coefficients. Since the introduction of 𝜃𝜈 imposes parametric structure, nonparametric identification of
the full substitutionmatrix is sufficient to identify 𝜃𝜈.

D Optimal instruments for CLEER
This appendix shows that CLEER �̂� = ( ̂𝜃, ̂𝛽) achieves the semiparametric efficiency bound for the

model presented in section 2.1.
Following C87, we show the result for all multinomial submodels55 and rely on the arguments in C87

to take us to the general case. The derivation below differs fromC87 only because CLEER combines
moments with a likelihood.
Wewill workwith the superpopulation likelihood of themodel after concentrating out𝜋. Specifically,

we show that if the distribution of product-level variables is multinomial, then the Hessian of the
superpopulation loglikelihood constrained to satisfy themoments with respect to 𝛼 = (𝜃, 𝛽) coincides
(up to asymptotically negligible terms) with the Hessian of CLEER if instruments are chosen according
to (23). As theHessians are equivalent, CLEERattains theCramérRao lower bound for anymultinomial
submodel.
We first write themoment conditions for an arbitrarymultinomial submodel. Treating𝑁𝑚 as random

andmaking the notational simplification of identical 𝐽𝑚 across markets, let 𝑐𝑚 = [𝑥▿𝑚, 𝑏
▿
𝑚, 𝜉

▿
𝑚, 𝑁𝑚]

▿,
where 𝑥𝑚, 𝑏𝑚 are vectorized-versions of 𝑋𝑚, 𝐵𝑚. In view of themultinomial assumption, we followC87
and express the (population) PLMs as

0 = ∑
𝑡
𝑞 (𝑣𝑡)𝐻(𝑣𝑡)[𝛿(𝜃, 𝑣𝑡) − 𝑋▿

𝑣𝑡𝛽] = ∑
𝑡
𝑞𝑡𝐻𝑡𝑒𝑡(𝛼), (52)

where 𝑞𝑡 = ℙ(𝑐𝑚 = 𝑣𝑡)with 𝑣1,…, 𝑣 ̄𝑡 the values that 𝑐𝑚 can take,𝐻𝑡 = 𝐻(𝐵𝑣𝑡) amatrix of instruments,
𝑒𝑡(𝛼) = 𝛿𝑣𝑡(𝜃) − 𝑋▿

𝑣𝑡𝛽with 𝐵𝑣𝑡, 𝑋𝑣𝑡, 𝛿𝑣𝑡 the values of 𝛿𝑚 (with𝜋 partialed out) if 𝑐𝑚 = 𝑣𝑡. Equation (52)
is an unconditionalmoment condition since𝐻 incorporates all possible combinations of instrument
values.
We now construct the parametric likelihood of the submodel. Since we do not know the values of

the 𝑞𝑡 , the objective function will now have 𝑞𝑡’s in them as an auxiliary parameter. Let 𝑎𝑚 be a vector
containing all (𝑦𝑖𝑚, 𝑧𝑖𝑚, 𝐷𝑖𝑚)’s in a givenmarket, where the value of 𝑧𝑖𝑚 is only observed if 𝐷𝑖𝑚 = 1.
The superpopulation loglikelihood incorporating the multinomial distribution of the product-level
variables is

𝔄(𝛼, 𝑞) ≔ 𝑀∑
𝑡
𝑞𝑡 [𝕃𝑡(𝛼) + log 𝑞𝑡], (53)

55A parametric submodel is any given parametric model that satisfies the imposed conditions. A multinomial submodel is a
parametric submodel in which certain variables are assumed to have a multinomial distribution.
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where 𝕃𝑡is the expected value of the loglikelihood for a single market conditional on 𝑐𝑚 = 𝑣𝑡, after
concentrating out𝜋𝑚. Without 𝕃𝑡 in (53), the optimal instruments defined belowwould exactly mirror
C87.
Next, we derive theHessian of (53) at its optimum. For given value of 𝛼, maximizing (53)with respect

to 𝑞 subject to∑𝑡 𝑞𝑡 = 1 and∑𝑡 𝑞𝑡𝐻𝑡𝑒𝑡(𝛼) = 0, yields the solution

𝑞𝑡 =
𝑞𝑡

1 + 𝔩▿(𝜃, 𝛽)𝐻𝑡𝑒𝑡(𝜃, 𝛽)
,where𝔩 = (∑

𝑡
𝑞𝑡𝐻𝑡𝑒𝑡𝑒

▿
𝑡 𝐻

▿
𝑡 )

−1
∑
𝑡
𝑞𝑡𝐻𝑡𝑒𝑡 ≕ 𝔙−1(𝜃, 𝛽)∑

𝑡
𝑞𝑡𝐻𝑡𝑒𝑡(𝛼).

Plugging 𝑞𝑡 back into (53) yields

�̄�(𝛼) ≔ 𝑀∑
𝑡
𝑞𝑡 {𝕃𝑡(𝛼) − log[1 + 𝔩▿(𝛼)𝐻𝑡𝑒𝑡(𝛼)]} + 𝑀∑

𝑡
𝑞𝑡 log 𝑞𝑡 .

Letting𝔊 = ∑𝑡 𝑞𝑡𝐻𝑡𝜕𝛼▿𝑒𝑡(𝛼 ), and noting that 𝔩(𝛼) = 0 for all 𝛼, the Hessian of �̄� at the truth is

𝑀(𝕃𝛼𝛼 −
1
2𝔊

▿𝔙 −1𝔊 ). (54)

Taking the inverse of the (minus) Hessian yields the Cramér Rao lower bound.
Finally, we show thatminus (54) coincideswith theHessian of the CLEER superpopulation objective

function if 𝑐𝑚 has a multinomial distribution and the instruments are chosen according to (23). To
see this, we first note that 𝕃𝜃𝜃 = 𝔼[ℒ𝜃𝜃𝑚 − ℒ𝜃𝜋𝑚ℒ−1

𝜋𝜋𝑚ℒ𝜋𝜃𝑚], and that all other elements of 𝕃𝛼𝛼
are zero since 𝛽 does not enter the likelihood. That leaves us with the 𝔊 ▿𝔙 −1𝔊 component. Let
{𝐵(𝑘)} be the values that 𝐵𝑚 can take, 𝑞(𝑘) ≔ ∑𝑡 𝑞𝑡 𝟙(𝐵𝑣𝑡 = 𝐵(𝑘)) = ℙ(𝐵𝑚 = 𝐵(𝑘)), 𝐻(𝑘) = 𝐻(𝐵(𝑘)),
𝑉𝑘 = 𝕍(𝜉𝑚 ∣ 𝐵𝑚 = 𝐵(𝑘)), and

𝐴𝑘 = ∑
𝑡

𝑞𝑡
𝑞(𝑘)

𝟙(𝐵𝑣𝑡 = 𝐵(𝑘))𝜕𝛼𝑒
▿

𝑡 = 𝔼([
𝔻 ▿
𝜃𝑚 − ℒ𝜃𝜋𝑚ℒ−1

𝜋𝜋𝑚𝔻
▿

𝜋𝑚

−𝑋▿
𝑚

] || 𝐵𝑚 = 𝐵(𝑘)).

Now, since 𝑆▿𝒫𝑅𝑆 ≤ 𝑆▿𝑆 for anymatrices 𝑅, 𝑆,56

𝔊 ▿𝔙 −1𝔊 = ∑
𝑘
𝑞(𝑘)𝐴𝑘𝐻

▿
(𝑘)(∑

𝑘
𝑞(𝑘)𝐻(𝑘)𝑉𝑘𝐻

▿
(𝑘))

−1
∑
𝑘
𝑞(𝑘)𝐻(𝑘)𝐴

▿
𝑘

≤ ∑
𝑘
𝑞(𝑘)𝐴𝑘𝑉−1

𝑘 𝐴▿
𝑘 = 𝔼(𝐵opt

▿
𝑚 𝒱𝜉𝑚𝐵

opt
𝑚 ). (55)

Now consider the Hessian of the PLMportion of the CLEER objective function at the truth divided by
𝑀 using our proposed instruments,

1
𝑀 [

(𝔻𝜃 − 𝜕𝜃𝜎
▿𝔻𝜋)𝐵opt

−𝑋▿𝐵opt
] (𝐵opt▿𝒱𝜉𝐵opt)−1 [(𝔻

▿
𝜃 − 𝜕𝜃𝜎

▿𝔻▿
𝜋)𝐵opt −𝑋▿𝐵opt]

▿
≃ 𝔼(𝐵opt

▿
𝑚 𝒱−1

𝜉𝑚𝐵
opt
𝑚 ),

i.e. up to negligible terms it is the right-hand side in (55). To conclude the argument, the left-hand side
of (55) cannot be less than the right-hand side since that wouldmake our estimatormore efficient than
themaximum likelihood estimator in the parametric submodel.57 So the left-hand side and right-hand
side in (55) must be equal. Consequently, the Hessian of CLEER using optimal instruments at the truth

56Make 𝑆▿ = [√𝑞(1)𝐴1𝑉−1/2
1 ,…,√𝑞(�̄�)𝐴�̄�𝑉

−1/2
�̄� ] ∈ ℝ𝑑𝛼×(�̄�𝐽𝑚) where ̄𝑘 is the number of values 𝐵𝑚 can take.

57Recall that the Cramér Rao lower bound is the inverse of (minus) the Hessian of a loglikelihood function.
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is (54). So CLEER achieves the Cramér Rao bound in everymultinomial submodel.

E Estimator Comparison
In this appendix, we present additional details on the comparison between CLEER and estimators

employed in the applied literatuere.
E.1 Schematic Sketch of Section section 6
Fig. 10 provides a summary of the steps presented in section 6. The top node in the tree represents

CLEER. Each node below represents an alteration to arrive at an alternative estimator. The large
pink box representing section 6.3 proposes several alternative estimators which we will rationalize
as modifications of the score. One can stop the process at any node in the tree, so in total the figure
describes nine alternative estimators (including share-constrained likelihood, see fn. 32). At each node,
we briefly list the primary costs (red) and benefits (green) of the step relating to identification (ID-CARD),
econometric efficiency (both rate and variance,Fighter-Jet), inference (Band-aid), computational tractability (Laptop-Code),
data requirements (Dollar-SignDollar-Sign) and experience in applied work (??). Each step downward in the tree leads
to an estimator that is weakly less efficient than its parent. To our knowledge, all estimators that have
been applied in empirical work on discrete choice demand are covered here.
E.2 Share Constraint
In section 6.2 we listed three drawbacks to the imposition of share constraints on a likelihood or

GMMestimator relating to robustness to zero shares, efficiency and inference. This section discusses
each of these issues in turn.
First, because it is a one to onemapping on the interior of the probability simplex, doing so rules out

the presence of zero observed shares. Moreover, the contraction canbecomeunstable as observed shares
tend towards zero and ‖𝔻𝜋𝑚‖ = ‖𝜕𝜋▿𝑚𝛿𝑚‖ tends to infinity. While this is reasonable for conditional
choice probabilities, applied cases have arisen where zero shares are observed in data due to finite
market sizes𝑁𝑚 and small choice probabilities. In this case, evenwhen shares are non-zero, they will
be imprecisely estimated. CLEER offers some robustness to zero or small shares because it does not
enforce unconditional choice probabilities equal market shares.
Second, imposing the share constraints introduces a potential loss of efficiency. Suppose that 𝜃 𝑧 ≠ 0

and 𝐼 is large relative to𝑀 such that contribution of the PLMs to the estimation of 𝜃𝜈 are asymptotically
negligible (as discussed in section 5). Then this efficiency loss occurs unless the population in the
smallestmarket diverges faster than both 𝐼 and𝑀. Examples 1 and 2 in Grieco et al. (2023b) illustrate
that this efficiency loss can be substantial.
For intuition, wenow show that imposing share constraints is equivalent to placing infiniteweight on

themacro likelihood in CLEER.To see this, separate out themicro andmacro terms of log �̂� as specified
in (7) and consider the derivative of themacro loglikelihoodwith respect to 𝛿, i.e. for all𝑚 = 1,… ,𝑀
and all 𝑗 = 1,… , 𝐽𝑚,

𝐽𝑚
∑
𝑘=0

𝑠𝑘𝑚
𝜎𝑘𝑚

∫𝓈𝑘𝑚(𝑧, 𝜈)(𝟙(𝑘 = 𝑗) − 𝓈𝑗𝑚(𝑧, 𝜈))d𝐹(𝜈)d𝐺(𝑧) = 0, (56)

where 𝓈was defined in (2). Setting 𝛿 = 𝛿(𝜃, 𝑠) such that 𝜎(𝜃, 𝛿) = 𝑠 solves (56) as the left hand side
becomes

∫𝓈𝑗𝑚(𝑧, 𝜈)d𝐹(𝜈)d𝐺(𝑧) −∫𝓈𝑗𝑚(𝑧, 𝜈)
𝐽𝑚
∑
𝑘=0

𝓈𝑘𝑚(𝑧, 𝜈)
⏟⎵⎵⎵⏟⎵⎵⎵⏟

=1

d𝐹(𝜈)d𝐺(𝑧).
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CLEER
ID-CARD uses all available information
Fighter-Jet fully efficient
Band-aid correct inference with large consumer samples
Band-aid correct inference with weak micro identification
Band-aid correct inference with weak product moments
Laptop-Code well-behaved objective function
Laptop-Code reasonably fast available software

Section 6.2: impose share constraints
Fighter-Jet could lose efficiency
Band-aid can invalidate inference with large consumer samples
Laptop-Code easier to compute than GMMwith likelihood score as moments
Laptop-Code harder to compute than CLEER

Section 6.1: GMMwith Likelihood score as moments
ID-CARD could lose identification
Fighter-Jet fully efficient if identified
Laptop-Code intractable without imposing share constraints

Section 6.3: linearize score

Section 6.3.1: linearizing 𝜃𝑧 moments

Laptop-Code no simulation bias

Fighter-Jet loss of efficiency

section 6.3.2: addressing 𝜃𝜈 moments

drop 𝜃𝜈 moments

Laptop-Code no simulation bias
ID-CARD loss of micro information
ID-CARD needs overidentified productmoments
Fighter-Jet slower rate of convergence

second choice moments
Laptop-Code no simulation bias
Dollar-SignDollar-Sign requires additional data
Fighter-Jet data better used by extending CLEER

fancy newmoments

Laptop-Code no simulation bias
Fighter-Jet loss of efficiency
Fighter-Jet fastest possible rate
?? has not been used before

Section 6.4: population statistics instead of micro moments

Dollar-SignDollar-Sign only requires crosstabs

Fighter-Jet loss of efficiency compared to section 6.3.1

can also impose share
constraints directly

Figure 10: Schematic comparison of our estimator to alternatives. See text for details.

By Berry (1994), this solution is unique for every 𝜃. Therefore, imposing share constraints effectively
places infinite weight on this moment.58 It is well known from standard GMM theory that placing
infinite weight on a subset of moments is generally inefficient. As noted, in our setting, there would be
an efficiency loss unless 𝐼 and𝑀were negligibly small compared to𝑁𝑚 because then themacro score
runs overmore terms than the othermoments.
Third, andmost importantly, assuming 𝑠 = 𝜋 will invalidate standard inference unless the total

58If one places more weight on a moment in GMM estimation (without changing the rest of the weight matrix) then that
moment at the estimate gets closer to zero. If one increases the weight on amoment to infinity, then that moment evaluated
at the estimate must go to zero.
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number of consumers in all markets is negligible compared to the square root of the population in
the smallest market. If one treats 𝛿(𝜃, 𝜋 ) as a known deterministic function of 𝜃, one ignores the
uncertainty arising fromapproximating𝜋 with observedmarket shares. Thiswill result in a downward
bias in the standard errors for ̂𝛿. Indeed, for some linear combinations of 𝛿 , asymptotics are governed
by the estimation error inmarket shares unless 𝐼 is negligibly small compared tomin𝑚√𝑁𝑚.
To illustrate, consider inference on a linear combination of 𝛿𝑚. Imposing share constraints, it would

be tempting to use the deltamethod to conclude that for any vector 𝑣 ≠ 0,

√𝐼𝑣▿( ̂𝛿𝑚 − 𝛿𝑚)

√𝑣▿𝜕𝜃▿𝔻𝜃𝑚( ̂𝜃, 𝑠𝑚) ̂𝒱𝜃𝔻
▿
𝜃𝑚( ̂𝜃, 𝑠𝑚)𝑣

𝑑
→𝒩(0, 1), (57)

where 𝔻𝜃𝑚 is the derivative of 𝛿𝑚 with respect to 𝜃 and 𝒱𝜃 is the asymptotic variance of ̂𝜃. This
ignores sampling error in the aggregate data, which becomes a problem for all vectors 𝑣 for which
𝑣▿𝔻𝜃𝑚(𝜃 , 𝜋 ) = 0,59 where the left-hand side of (57) diverges. The space of such vectors 𝑣 is of
dimension no less than 𝐽𝑚 − 𝑑𝜃 > 0 since 𝛿𝑚(⋅, 𝜋 ): ℝ𝑑𝜃 → ℝ𝐽𝑚. Using the bootstrap the way it is
typically used does not solve this problem.60 Weprovide the correct variance formulas for the GMM
estimators under strong micro identification when 𝐼 ≻ 𝑀 in app. F. Grieco et al. (2023b) provides a
numerical example that shows that imposing the share constraint without adjusting the standard errors
can lead to standard errors being off by an arbitrarily large factor. This issue extends to any estimator in
which the share constraints are imposed to hold. In contrast, inference using CLEER can be done using
standard extremum estimation techniques.61

E.3 Conformant GMM
This subsection presents the approximation to the derivative of log𝐿with respect to 𝜃𝜈 that can be

employed to avoid simulation bias in a GMMestimator.
First, note that62∑𝐽𝑚

𝑗=0 𝓈𝑗𝑚(𝑥
𝑘
𝑗𝑚𝜈𝑘 −∑𝐽𝑚

𝑘=0 𝓈𝑘𝑚𝑥
𝑘
𝑘𝑚𝜈𝑘) = 0, such that (26) can be expressed as

𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚
∑
𝑗=0

𝐷𝑖𝑚
𝑦𝑖𝑗𝑚 − 𝜎𝑧𝑖𝑚𝑗𝑚

𝜎𝑧𝑖𝑚𝑗𝑚
∫𝓈𝑗𝑚(𝑧𝑖𝑚, 𝜈)(𝑥𝑘𝑗𝑚𝜈𝑘 −

𝐽𝑚
∑
𝑘=0

𝑥𝑘𝑘𝑚𝜈𝑘𝓈𝑘𝑚(𝑧𝑖𝑚, 𝜈))d𝐹(𝜈),

because summing the integrand over 𝑗 equals zero and 𝜎𝑧𝑖𝑚𝑗𝑚 /𝜎𝑧𝑖𝑚𝑗𝑚 = 1. Noting that the conditional
expectation of the last displayed equation given all 𝑧’s and 𝑥’s equals zero at the truth and that the
denominator only depends on 𝑧’s and 𝑥’s, we can remove the weighting in the denominator. Removing
the denominator affects efficiency but still provides a validmoment. So we are left with a sum over the
product of two integrals, namely

𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚
∑
𝑗=0

∫𝐷𝑖𝑚{𝑦𝑖𝑗𝑚 − 𝓈𝑗𝑚(𝑧𝑖𝑚, 𝜈∗)}d𝐹(𝜈∗)∫𝓈𝑗𝑚(𝑧𝑖𝑚, 𝜈)(𝑥𝑘𝑗𝑚𝜈𝑘 −
𝐽𝑚
∑
𝑘=0

𝓈𝑘𝑚(𝑧𝑖𝑚, 𝜈)𝑥𝑘𝑘𝑚𝜈𝑘)d𝐹(𝜈). (58)

59Indeed, then by a Taylor expansion,

𝑣▿[𝛿𝑚( ̂𝜃, 𝑠𝑚)−𝛿𝑚(𝜃,𝜋𝑚)] ≃ 𝑣▿[𝛿𝑚( ̂𝜃, 𝑠𝑚) − 𝛿𝑚( ̂𝜃, 𝜋𝑚)]⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
⪯𝑁−1/2

𝑚

+𝑣▿𝔻𝜃𝑚⏟⎵⏟⎵⏟
=0

( ̂𝜃−𝜃 )+1
2 ∑𝑗

𝑣𝑗 ( ̂𝜃 − 𝜃 )▿𝜕𝜃𝜃▿𝛿𝑗𝑚(𝜃 ,𝜋𝑚)( ̂𝜃 − 𝜃 )⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
⪯𝐼−1

,

such that asymptotics are governed by the first right-hand side term unless 𝐼/√𝑁𝑚 vanishes.
60One would have to draw the bootstrap population from the superpopulation, which is impossible.
61We are implicitly assuming that the integrals can be computed sufficiently accurately so as not to affect the asymptotics.
62We set 𝑥0𝑚 = 0 without loss of generality.
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Thus, approximating the integrals with sums usingmutually independentMonte Carlo draws results in
a simulatedmoment that hasmean zero because simulation error enters linearly.63 While utilizing this
moment will result in an estimator with the same convergence rates as our estimator, and so will satisfy
conformance, it will not be efficient.

F Variance comparison under strong identification
This appendix provides a variance comparison between the CLEER ( ̂𝜃, ̂𝛿) and the corresponding

share constrained estimator ( ̂𝜃SHCON, ̂𝛿SHCON) thatmaximizes themixed logit objective function subject
to the share constraints. It then demonstrates that for the share constrained estimator, ignoring the
contribution of the estimation of 𝜋 often results in incorrect inference. Throughout, we focus on the
strongmicro identification case and 𝐼 ≻ 𝑀 so that we can ignore �̂�which is asymptotically negligible
for the estimation of (𝜃 , 𝛿 ).
First, we compare the asymptotic variance of linear combinations of the estimators ( ̂𝜃, ̂𝛿) and

( ̂𝜃SHCON, ̂𝛿SHCON).64 Specifically, let thematrix𝒱CLEER
𝜃𝛿 be such that for any conformable𝐶with a fixed

number of columns,

(𝐶▿𝒱CLEER
𝜃𝛿 𝐶)−1/2𝐶▿ [

̂𝜃 − 𝜃
̂𝛿 − 𝛿

]
𝑑
→𝒩(0, 𝕀). (59)

Analogously, thematrix𝒱SHCON
𝜃𝛿 does the same for the share constrained estimator with the identical𝐶.

We can ascertain relative efficiency by comparing the elements of 𝒱CLEER
𝜃𝛿 and𝒱SHCON

𝜃𝛿 . For𝒬ℒ
𝜃𝜃 =

ℒ𝜃𝜃 − ℒ𝜃𝜋ℒ−1
𝜋𝜋ℒ𝜋𝜃,𝒜 = ℒ−1

𝜋𝜋ℒ𝜋𝜃,𝔊 = 𝔻𝜃 − 𝔻𝜋𝒜, we have

𝒱CLEER
𝜃𝛿 = [

(𝒬ℒ
𝜃𝜃)

−1 (𝒬ℒ
𝜃𝜃)

−1𝔊▿

𝔊(𝒬ℒ
𝜃𝜃)

−1 𝔊(𝒬ℒ
𝜃𝜃)

−1𝔊▿ + 𝔻𝜋ℒ−1
𝜋𝜋𝔻

▿
𝜋
]

Next, consider𝒱SHCON
𝜃𝛿 . This estimator is equivalent to placing infinite weight onℒ◾, however, since

ℒ◾
𝜃 = 0, the other terms (ℒ⬩ and in general𝛷, though not for this example) will still appear in the score

and Hessian. Indeed, note that ℒ⬩
𝜃 = ℒ𝜃 etc. So for ̄𝒜 = ℒ◾−1

𝜋𝜋 ℒ𝜋𝜃, ̄ℒ𝜋𝜋 = ℒ◾
𝜋𝜋 + ℒ𝜋𝜃ℒ−1

𝜃𝜃ℒ𝜃𝜋, and
�̄�ℒ
𝜃𝜃 = ℒ𝜃𝜃 − ℒ𝜃𝜋 ̄ℒ−1

𝜋𝜋ℒ𝜋𝜃, and �̄� = 𝔻𝜃 − 𝔻𝜋 ̄𝒜ℒ−1
𝜃𝜃 �̄�

ℒ
𝜃𝜃, we have,

𝒱SHCON
𝜃𝛿 = [

(�̄�ℒ
𝜃𝜃)

−1 (�̄�ℒ
𝜃𝜃)

−1�̄�▿

�̄�(�̄�ℒ
𝜃𝜃)

−1 �̄�(�̄�ℒ
𝜃𝜃)

−1�̄�▿ + 𝔻𝜋 ̄ℒ−1
𝜋𝜋𝔻

▿
𝜋
] .

To see directly that CLEER is at least as efficient for 𝜃 as SHCON, note first thatℒ𝜋𝜋 − ̄ℒ𝜋𝜋 = ℒ⬩
𝜋𝜋 −

ℒ𝜋𝜃ℒ−1
𝜃𝜃ℒ𝜃𝜋 = ℒ⬩

𝜋𝜋 − ℒ⬩
𝜋𝜃ℒ

⬩−1
𝜃𝜃 ℒ⬩

𝜃𝜋 ≥ 0 and then that𝒬ℒ
𝜃𝜃 − �̄�ℒ

𝜃𝜃 = ℒ𝜃𝜋( ̄ℒ−1
𝜋𝜋 − ℒ−1

𝜋𝜋)ℒ𝜋𝜃 ≥ 0.
Next, we discuss the potential hazards of conducting inference on the share constrained estimator.

The fundamental issue is that𝜋 is estimated by 𝑠, which is accounted for in𝒱SHCON
𝜃𝛿 but often neglected

in practice. If 𝜋 were known, one could approximate𝒱SHCON
𝜃𝛿 by an oracle equivalent,

𝒱ORACLE
𝜃𝛿 = [

ℒ−1
𝜃𝜃 ℒ−1

𝜃𝜃𝔻
▿
𝜃

𝔻𝜃ℒ−1
𝜃𝜃 𝔻𝜃ℒ−1

𝜃𝜃𝔻
▿
𝜃
]

63This is necessary to satisfy condition (iii) of Theorem 3 in PP89. Many of the other assumptions in PP89 hold trivially
because our simulated moment (58) is infinitely differentiable in 𝜃 and also infinitely differentiable in the simulation
draws due to the properties of the mixed logit demand specification (i.e., 𝓈 is infinitely differentiable with respect to 𝜈).

64Since the dimension of 𝛿 grows with𝑀, we focus on linear combinations of fixed length. That is, 𝐶 has a fixed number of
columns while its number of rows grows with𝑀.
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However, substituting𝒱ORACLE
𝜃𝛿 for𝒱CLEER

𝜃𝛿 in (59) does not result in an asymptotically normal distribu-
tion for many choices of 𝐶when 𝜋 is estimated by 𝑠. To see why, note that since𝔻𝜃 hasmanymore
rows than it has columns, 𝔻𝜃ℒ−1

𝜃𝜃𝔻
▿
𝜃 has many eigenvalues equal to zero and so (𝐶

▿𝒱CLEER
𝜃𝛿 𝐶)−1/2 is

undefined. For the corresponding eigenvector-directions, the term𝔻𝜋ℒ−1
𝜋𝜋𝔻

▿
𝜋 is first order and hence

needed to avoid this degeneracy. So an acceptable substitute under the assumption𝑁𝑚 ≻ 𝐼𝑚 would be,

𝒱CORRECTED
𝜃𝛿 = [

ℒ−1
𝜃𝜃 ℒ−1

𝜃𝜃𝔻
▿
𝜃

𝔻𝜃ℒ−1
𝜃𝜃 𝔻𝜃ℒ−1

𝜃𝜃𝔻
▿
𝜃 + 𝔻𝜋ℒ−1

𝜋𝜋𝔻
▿
𝜋⏟⎵⎵⏟⎵⎵⏟

needed

]

However, to ourknowledge, thismethodof inferencehasnever beenapplied in anyestimator employing
share constraints.

G Computation
While CLEER is of theoretical interest, it must also be computationally tractable in order to be

appropriate for applied use. This appendix discusses two critical computational aspects of our estimator.
First, CLEER involves an optimization over 𝛿which is a vector of length 𝐽. In modern datasets, the
number of products across all markets can run into the hundreds of thousands, posing a potential
problem for nonlinear optimization. However, there are a number of features of our optimization
problem that simplify this task considerably. Second, any estimator must numerically approximate
integrals over demographics 𝑧 and taste shocks 𝜈.65 The choice of integrationmethodwill impact that
accuracy of the estimator. We discuss several approaches in app. G.2.
G.1 Dimensionality
Wenowdescribe two feasible algorithms for the computation of CLEERwhichmake use of Newton’s

methodwith Trust Regions.66 Recall from (5) that our optimization problem is

( ̂𝛽, ̂𝜃, ̂𝛿) = argmin
𝛽,𝜃,𝛿

(− log �̂�(𝜃, 𝛿) + ̂𝜒(𝛽, 𝛿)).

Like BLP95, we start by concentrating out 𝛽which leaves

( ̂𝜃, ̂𝛿) = argmin
𝜃,𝛿

(− log �̂�(𝜃, 𝛿) + ̂𝜒{ ̂𝛽(𝛿), 𝛿}). (60)

We then have two levels of optimization. In the inner optimization we compute ̂𝛿 as a function of 𝜃, i.e.
for each candidate value 𝜃we find aminimizer ̂𝛿(𝜃). In the outer optimizationwe thenminimize over
𝜃.

̂𝜃 = argmin
𝜃

(− log �̂�(𝜃, 𝛿(𝜃)) + ̂𝜒{ ̂𝛽(𝛿(𝜃)), 𝛿(𝜃)}) (61)

s.t.: 𝛿(𝜃) = argmin
𝛿

(− log �̂�(𝜃, 𝛿) + ̂𝜒{ ̂𝛽(𝛿), 𝛿})

This approach is similar to that in BLP95with the important exception that the inner loop objective is to
optimize (5)—the same as the outer loop objective—rather than satisfying the share constraint𝜋 = 𝑠.
The outer loop is over a low dimensional parameter vector, albeit computations of the derivatives

65The exception to this is the classical mixed logit, which only uses micro data and hence only integrates over 𝜈.
66As noted below, one of these algorithms computes an estimator that is asymptotically equivalent to CLEER but less
computationally intensive.
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involves application of the chain rule to account for inner loop optimization.67

The high-dimensional problem is now confined to the inner loop. For BLP95, tractability followed
from the existence of a contractionmapping to compute𝜋 = 𝑠. For our problem, first suppose that (5)
is just identified. In this case, ̂𝜒[ ̂𝛽(𝛿), 𝛿] = 0 for all values of 𝛿, in which case we only need tominimize
− log �̂� in the inner loop. Conveniently, − log �̂� is additively separable across markets in 𝛿𝑚 in each
𝛿𝑚. So we can parallelize the computation of ̂𝛿𝑚(𝜃)market bymarket, and each computation is highly
tractable.
The overidentified case is more complicated. Since ̂𝜒[ ̂𝛽(𝛿), 𝛿] > 0 and is not additively separable in

𝜋𝑚. However, there are several convenient features whichmake the inner loop of (61) tractable, even in
this case. To simplify exposition but without loss of generality, wewill take �̂� in the definition of ̂𝜒 in
(9) to be (𝐵▿𝐵)−1 where 𝐵 is a 𝐽 × 𝑑𝑏matrix with rows 𝑏

▿
𝑗𝑚, the instruments introduced in (10).

The first such feature is that ̂𝛽(𝛿) is simply a linear IV estimator, i.e. ̂𝛽(𝛿) = (𝑋▿𝒫𝐵𝑋)−1𝑋
▿𝒫𝐵𝛿,

with 𝒫𝐵 = 𝐵(𝐵▿𝐵)−1𝐵▿ an orthogonal projection matrix. Second, ̂𝜒 is quadratic in 𝛿. Thus, writing
𝒫𝒫𝐵𝑋 = 𝒫𝐵𝑋(𝑋

▿𝒫𝐵𝑋)−1𝑋
▿𝒫𝐵, theminimand of (60) of becomes

− log �̂�(𝜃, 𝛿) + 1
2𝛿

▿(𝒫𝐵 − 𝒫𝒫𝐵𝑋)𝛿 (62)

Third, (62) combines the computationally convenient likelihoodwith a convex term, so the resulting
objective can be optimized over 𝛿 via Newton’s method. Fourth, barring collinearities thematrix𝒫𝐵 −
𝒫𝒫𝐵𝑋 is a positive semidefinitematrix of rank𝑑𝑏−𝑑𝛽. Note that by the spectral decomposition,𝒫𝐵−𝒫𝒫𝐵𝑋

canhence be expressed in the form𝒦𝒦▿ for a𝑑𝛿×(𝑑𝑏−𝑑𝛽)matrix𝒦. This is convenient because𝑋may
includemany exogenous regressors (eg., brand or product—rather than product-market—dummies)
which also appear in 𝐵. Such𝒦 is not unique, but all choices are equivalent.68

Wenow turn to the primary complication of applying Newton’smethod to optimize (62) over 𝛿 in
the inner loop: computation of the inverse of the Hessian (with respect to 𝛿). Just storing a Hessian in
100,000 parameters would take 80Gb of memory; the computational cost of taking the inverse is cubic
in 𝑑𝛿 and the result could be subject to substantial numerical error. Fortunately, we do not need to store
or directly invert the full Hessian of (62),𝐻 +𝒦𝒦▿, where𝐻 is the Hessian of − log �̂�. Instead, we can
compute the inverse Hessian exploiting the above-mentioned features. The inverse of theHessian of
(62) can by theWoodburymatrix identity be written as𝐻−1 − 𝐻−1𝒦(𝕀 + 𝒦▿𝐻−1𝒦)−1𝒦▿𝐻−1,
Since log �̂� is additively separable in the 𝛿𝑚’s,𝐻 is block diagonal, so𝐻−1 can be efficiently computed

and stored. To appreciate the importance of this feature, note that if one has 1,000 markets with
100 inside goods in each market, the problem reduces from inverting a full 100,000 by 100,000
matrix𝐻 + 𝒦𝒦▿ to inverting a thousand 100 by 100 matrices, which is both much less demanding
computationally and reduces memory demand by a factor 1,000 (i.e., 100 0002/(1002 × 1 000)). This

67Note that, as in any nested optimization problem, the outer loop of an optimization problem with objective function of the
form 𝑓(𝜃, 𝛿) has gradient 𝑓𝜃[𝜃, 𝛿sol(𝜃)] since the inner loop solution 𝛿sol(𝜃) has made 𝑓𝛿[𝜃, 𝛿sol(𝜃)] = 0 which, by
the implicit function theorem, implies that 𝜕𝜃▿𝛿sol(𝜃) = −𝑓−1

𝛿𝛿𝑓𝛿𝜃. Hence, the Hessian becomes 𝑓𝜃𝜃 − 𝑓𝜃𝛿𝑓−1
𝛿𝛿𝑓𝛿𝜃. In

practice, we do use a change of variables on the 𝜃𝜈’s in that we optimize over their logarithms to allow for an unconstrained
optimization.

68To obtain an explicit form for𝒦, let 𝐶 denote the columns that 𝐵 and 𝑋 have in common and �̄�, �̄� the columns that
are unique to each matrix. Then, an explicit form is𝒦 = 𝒰𝐵ℳ𝒰▿

𝐵𝒰𝑋
with𝒰𝐵,𝒰𝑋 matrices with orthonormal columns

spanning the column spaces of ℳ𝐶�̄�,ℳ𝐶�̄�, respectively, and ℳ denoting an annihilator matrix. This follows by
expressing𝒫𝐵 −𝒫𝒫𝐵𝑋 = (𝒫𝐶 +𝒫�̄�) − (𝒫𝐶 +𝒫𝒫�̄��̄�) = 𝒫�̄� −𝒫𝒫�̄��̄� and applying the singular value decomposition to
�̄� and �̄�.
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makes the optimization step of the inner loop practical formany products.
For even larger problems, onemay consider an alternative approachwhich is implemented in the

Grumps package as the “cheap” estimator. Here, we alter the inner loop dropping ̂𝜒, so the full problem
becomes,

̂𝜃 = argmin
𝜃

(− log �̂�(𝜃, 𝛿(𝜃)) + ̂𝜒{ ̂𝛽(𝛿(𝜃)), 𝛿(𝜃)}) (63)

s.t.: 𝛿(𝜃) = argmin
𝛿

− log �̂�(𝜃, 𝛿)

This yields a different, but asymptotically equivalent, estimator to CLEER. However, this estimator is
not robust to zero shares. We further note that the “cheap” estiamatormay be useful as a warm start for
CLEER in some cases.
G.2 Numerical integration
Aswe have pointed out, the largest disadvantage of our estimator is that a computable version relies

on numerical integration. This is costly since to avoid affecting the asymptotic behavior, numerical
integration error must be negligible. Of course, as always, we can arbitrarily reduce the numerical
approximation error by incurring a higher computational cost. In contrast, GMMestimators can be
computed via themethod of simulatedmoments (MSM).MSM can achieve the same convergence rate
as its theoretical counterpart by averaging over noisy approximations of these integrals. However, as
discussed section 6.3.1, numerical approximation of the share inversion adds an additional source of
complexity for estimators in our setting that enforce share constraints.
CLEER evaluates two types of integrals, those over 𝜈 (e.g.,𝜋𝑧𝑚) and those over both 𝜈 and 𝑧 (e.g.,𝜋𝑚).

This distinction suggests different integrationmethods for each type.
Quadraturemethods arewell suited formicro integrals over𝜈. Thedistributionof 𝜈 is assumedknown

and is usually a familiar and tractable one, often normal. Moreover, 𝜈 is usually of small dimension, so
the curse of dimensionality associated with tensor product quadraturemethods is less binding.69 We
examine the sensitivity of CLEER’s numerical performance to the number of nodes used for numerical
integration in section 7.4.
The integrals over both 𝑧 and 𝜈 are more difficult to compute. In addition to (𝑧, 𝜈) being higher

dimensional than 𝜈, the distribution of 𝑧 is usually informed by data and so less amenable to quadrature
methods (e.g., the distribution of income in the consumer population). On the other hand, they are
only computed for each product (𝐽) rather than each product-consumer pair (∑𝑚 𝐽𝑚𝐼𝑚). Given this,
(quasi-)Monte Carlo methods with a high number of draws are appropriate, albeit this requires the
number of Monte Carlo draws to grow faster than the square of the prevailing convergence rate, which
is the same number as is needed forMSMnot to lose efficiency. In our implementation for section 7, we
use 10,000 quasi-monte carlo draws to approximate these integral for all estimators.

H Monte Carlo Design
In this appendix we present the full details of ourMonte Carlo design and implementation. While

some of this material is redundant with the summary presented in section 7, it is also included here in
order to provide for a single, comprehensive overview.

69If 𝜈 is of high dimension, sparse quadrature methods can be viable alternatives. The designed quadrature approach of
Bansal et al. (2021) may be particularly attractive as all nodes have positive weights.
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H.1 Data Generating Process
Our empirical design includes two observable product characteristics (𝑥1𝑗𝑚, 𝑥2𝑗𝑚), with associated

parameters (𝛽1 , 𝛽2 ); two demographic characteristics (𝑧1𝑖𝑚, 𝑧2𝑖𝑚) interacted with a single corresponding
product characteristic with associated parameters (𝜃 𝑧

1 , 𝜃 𝑧
2 ); and two random coefficients (𝜃 𝜈

1 , 𝜃 𝜈
2 ).

Mean product quality is specified as 𝛿𝑗𝑚 = 𝛽𝑐 + 𝛽1 𝑥1𝑗𝑚 + 𝛽2 𝑥2𝑗𝑚 + 𝜉𝑗𝑚,The unobservable product
characteristic 𝜉𝑗𝑚 is also distributed as a standard normal independent across 𝑗 and𝑚.70

We specify that one of the observable product characteristics, 𝑥1, is correlated with unobserved
characteristics 𝜉𝑗𝑚, and thus endogenous. Specifically, so that 𝑥1 is normally distributed, let a vector
of instruments 𝑏1 and random noise 𝑢 both be vectors drawn from a standard normal distribution
independent of 𝜉 and each other. Then construct 𝑥1 according to,

𝑥1𝑗𝑚 = 𝑤𝑎𝑏1𝑗𝑚 +√1 − 𝑤2
𝑎 (𝑤𝑐𝑢𝑗𝑚 +√1 − 𝑤2

𝑐𝜉𝑗𝑚) (64)

where 𝑤𝑎 = 𝑤(𝑎) = 𝑎/√𝑎2 + (1 − 𝑎)2 for 𝑎 ∈ [0, 1] governs the strength of the instrument 𝑏1 and
𝑤𝑐 = 𝑤(𝑐) for 𝑐 ∈ [0, 1] governs the degree to which the remaining variation in 𝑥1 is due to random
noise versus the product’s unobserved quality. In estimation, we use 𝑏1 as an observed instrument for
𝑥1. The remaining characteristic 𝑥2𝑗𝑚 is exogenous and drawn from a standard normal independent of
all other variables.
Consumershaveobservable characteristics, 𝑧𝑖𝑚 = (𝑧1𝑖𝑚, 𝑧2𝑖𝑚) that aredrawn (independently) fromthe

standard normal distribution. Preference heterogeneity based on observable consumer characteristics
is parameterized according to 𝜇𝑧𝑖𝑚𝑗𝑚 = 𝜃 𝑧

1 𝑧1𝑖𝑚𝑥1𝑗𝑚 + 𝜃 𝑧
2 𝑧2𝑖𝑚𝑥2𝑗𝑚,

As in section7, altering𝜃 𝑧 affects the strengthof identificationof 𝜃 𝜈 via themicrodata by increasing
the variation in utility across consumers.
Consumers have unobserved characteristics 𝜈𝑖𝑚 = (𝜈1𝑖𝑚, 𝜈2𝑖𝑚)which are independent and drawn from

the standard normal distribution. Following themodel as well as standard practice, this distribution
is assumed to be known to the researcher. The unobserved heterogeneity term in utility is 𝜇𝜈𝑖𝑚𝑗𝑚 =
𝜃 𝜈
1 𝜈1𝑖𝑚𝑥1𝑗𝑚 + 𝜃 𝜈

2 𝜈2𝑖𝑚𝑥2𝑗𝑚.
In addition to the instrument 𝑏1 for 𝑥1 described above as well as a constant and the exogenous char-

acteristic 𝑥2, we utilize three additional “BLP instruments” constructed from product characteristics
for the PLMs (4). We construct a differentiation IV for 𝑥2 following GH20. Specifically, for 𝑏2 we use,

𝑏2𝑗𝑚 = ∑
𝑗′∈𝐽𝑚∖𝑗

(𝑥2𝑗𝑚 − 𝑥2𝑗′𝑚)2, (65)

This instrument is valid since it depends entirely on the exogenous vector 𝑥2. We also construct the
differentiation instrument for 𝑥1. Here, wemust make use of 𝑏1 following GH20. That is, we run a first
stage regression of 𝑥1 on 𝑥2 and 𝑏1 and use the resulting predictions ̂𝑥1 to construct 𝑏3 analogous to (65).
The final instrument is simply the number of products in eachmarket𝑚. This varies acrossmarkets but
notwithinmarket. Since 𝑑𝑏 = 6 > 𝑑𝛽 = 3, ̂𝜒 is overidentified for 𝛽 and the extra exclusion restrictions
are potentially useful to identify 𝜃 . Note that since 𝑑𝜃 = 4, the score of the likelihood for CLEER and
MDLE, and the two covariancemoments for GMM-Mare necessary to identify the full parameter vector.

70In a previous version of this paper (Grieco et al., 2023b), we have used a Pareto distribution for 𝜉𝑗𝑚. The Pareto distribution
more closely mimics the “80/20” rule commonly observed in market share data. However, the Pareto distribution has
thicker tails than allowed by G. This choice results in a bias in the PLMs which is visible for some simulations. In practice
CLEER still outperforms the other estimators.
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We include the same instruments in all three of the estimators we consider.
H.2 Baseline Parameterization
We organize all of our experiments around a baseline specification of the data generating process,

whichwe now describe. Except where they are explicitly varied, these specifications remain constant
throughout section 7.
The parameters 𝛽 = [−6, 1, 1]▿, 𝜃 𝑧 = [1, 1]▿, and 𝜃 𝜈 = [1, 1]▿ were chosen so that in the baseline

specification, average share of the inside products is .0206; and the first decile of shares is 0.0006 on
average. Theaverage shareof theoutsidegood is .6095, witha standarddeviationof .1326. We let𝑎 = 0.5
and 𝑐 = 0.5; which results in a themean F-stat for the first stage regression of 𝑥1 on the instruments of
190.71with a standard deviation of 18.05 across our 1000 simulations.
We draw data for𝑀 = 50markets. Products in eachmarket are independent of othermarkets. We

vary the number of products in eachmarket with fivemarkets each of {10, 12, 14, 16, 18, 20, 22, 24, 26,
28} products.71 There are𝑁𝑚 = 100 000 consumers in eachmarket. We take a random sample (without
replacement) of size 𝐼𝑚 = 1 000 for themicro dataset of eachmarket.
All three estimatorsmust integrate over both 𝜈 and 𝑧 to compute the function𝜋; we implement this

integration usingMonte Carlo simulation with 10 000 consumer draws. The two likelihood estimators
must also compute 𝜋𝑧𝑖𝑚 for each observation in the consumer sample. We use 11-point Gaussian
quadrature in both dimensions of 𝜈, but evaluate this choice in section 7.4.
H.3 Implementation
For all experiments, we estimate the model for each of 1 000 replications of the data generating

process. In rare instances, we draw a dataset where some product has a share of zero, in which case
we discard the draw and sample again. Because GMM-M requires 𝑠𝑚 > 0, it is unable to handle these
cases, our other estimatorsmay also be affected as we describe in app. I. In practice, most practitioners
drop products when no sales are observed, since it is difficult to determine whether they were actually
available for purchase. In, app. I, we investigate performance of all three estimators following this
practice. For CLEER andMDLEwe use a single, arbitrary, starting point. For GMM-M,which is known
to have local optima, wemulti-start from three values, including the truth. From the three runs, we use
the one generating the smallest minimum.
Finally, wemust choose weightmatrices for all three estimators. For CLEER andMDLE two step,

we use the standard initial choice of (𝐵▿𝐵)−1. Hence, our results do not take advantage of optimal
instruments. For GMM-M, we follow the pyblp default, which constructs a weight matrix for both
PLMs andmicro-moments that would be optimal if the initial parameter were the truth. Note that since
we perform amodestmultistart for GMM-Mwith one starting point being the truth, thismeans that
one of the GMM-M implementations utilizes the true optimal weightmatrix (as opposed to a consistent
estimate thereof).
For these reasons, if one wishes to view our results as a comparison between the implementations of

the three estimators—which is not our goal—one should view results in favor of CLEER orMDLE as
conservative. However, our primary purpose with these experiments is to straightforwardly illustrate
the theoretical properties of CLEER and the alternative estimators across a variety of designs.

71For the experiment varying the number of markets, we similarly vary the number of products in each market with one
market of {10, 12, 14, 16, 18, 20, 22, 24, 26, 28} products for𝑀 = 10, and 100 markets of {10, 12, 14, 16, 18, 20, 22, 24, 26,
28} products for𝑀 = 1000.
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I Small market population
In this appendix we discuss performance of CLEER and the other estimators presented in section 7

when the population size is small. We also presentMonte Carlo results for this situation.
When𝑁𝑚 is low, two issues arise. First, sampling error in 𝑠 increases, whichmakes imposing the

share constraint more costly in terms of efficiency. This impacts GMM-M but not CLEER orMDLE.
Second, when𝑁𝑚 is small, the probability that some offered products are not purchased, so 𝑠𝑗𝑚 = 0,

increases. When 𝑠𝑗𝑚 = 0, the share constraint cannot be solved, making it impossible to compute an
estimate for our GMM-M estimator. CLEER and theMDLE two step face similar but less severe issues
when a product is not purchased.
TheMDLE objective function log �̂� is well definedwhen 𝑠𝑗𝑚 = 0, however its score with respect to

𝛿𝑗𝑚 is negative for all finite 𝛿𝑗𝑚.72 In our view, the first step of MDLE is quite robust, as one can simply
drop 𝛿𝑗𝑚 from the parameter set when 𝑠𝑗𝑚 = 0without affecting the likelihood to recover 𝜃 and the
remaining elements of 𝛿.73 However, dropping 𝛿𝑗𝑚 does impact the PLMs, so the second step of MDLE
will suffer from selection bias in the estimation of 𝛽.
In principle, CLEER can address this issue when 𝑑𝑏 > 𝑑𝛽, since once the PLMs are added to the

objective function, it is no longer optimal to let 𝛿𝑗𝑚 → −∞, as this will cause ̂𝜒 to diverge, see (10).
However, once 𝑑𝑏 − 𝑑𝛽 shares are zero in the data, ̂𝜒 can be set to 0 for any 𝜃, so ̂𝜃must be estimated
from themicro data. If the number of zero shares is larger than 𝑑𝑏 − 𝑑𝛽, then the PLMs can be satisfied
with equality using only a subset of 𝛿𝑗𝑚 for zero share products and the remainder are free diverge as
above. Consequently, CLEER can only be computed provided that the number of products with zero
shares is no greater than than 𝑑𝑏 − 𝑑𝛽. This means that while CLEER can be estimated for allowing the
presence of a small number of zeros, it will eventually break down formarkets with very low𝑁𝑚 as the
number of zero share products increases.
For empirical applications, practical considerations also arise when 𝑠𝑗𝑚 = 0 is observed in data.

Foremost among them is that the researcher is usually uncertain as to whether or not product 𝑗was
actually available to consumers inmarket𝑚 as it may have been out of stock or simply not offered. The
issue of stock outs is broader than simply observing zero shares, but has been typically ignored in the
applied literature.74

In practice, applied researchers have commonly dropped products with zeromarket share from the
choice set of market𝑚while assuming all other products were available to all consumers. We now
examine the impact of this practice when, following our model, all products are available but some
were not purchased by any consumer in themarket population.
Specifically, we consider our baseline DGP from section 7, but lower themarket population size from

100,000 in the baseline to𝑁𝑚 = {10, 000; 5, 000; 1, 000}. This reduction in𝑁𝑚makes the probability of
drawing a product with amarket share of 0 increase from being negligible in the baseline to 0.22, 0.90,
and 7.79 percent respectively. Consequently, the probability that amarket contains a product with zero
share for these experiments is, 7.9, 28.22, and 92.18 percent. Thuswe consider the three cases presented
to be examples of small, moderate, and extreme zero shares problems.

72One can this immediately for𝐿◾ by examining (56). For𝐿⬩, it is intuitive since𝜍𝑧𝑗𝑚 > 0 for any finite 𝛿𝑗𝑚 and∑𝐽𝑚
ℓ=0 𝜍

𝑧
ℓ𝑚 =

1.
73Note that since 𝛿 are location normalized against the outside goods, the remaining 𝛿 will be unbiased provided 𝑠0𝑚 > 0.
74An important exception is Conlon and Mortimer (2013), which leverages periodic observations of product availability to
estimate a demand model with endogenous stock outs. We do not consider availability of such data in our analysis.
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Figure 11:Distribution of parameters for different population sizes 𝑁𝑚.

The distributions of our estimators are presented in fig. 11. To reiterate, when a product has amarket
share of zero, it is dropped from the dataset prior to estimation, enabling all three estimators to be
computed. When 𝑁𝑚 = 10, 000, there is relatively little difference between these results and our
baseline for any estimator. When𝑁𝑚 = 5, 000, the variance of GMM-M appears to increase slightly for
̂𝜃, and some bias for ̂𝛽 appears for all three estimators. However, overall performance is acceptable. In

the extreme case where𝑁𝑚 = 1, 000, the GMM-M estimator is severely biased for all parameters, this is
a direct result of its reliance on the product level moments which now suffer from significant selection
bias. CLEER is also biased for the same reason, but to a lesser extent as it combines information from the
biased PLMs and the likelihood. On the other hand,MDLE, which ignores the PLMswhen estimating
̂𝜃, remains unbiased for ̂𝜃 and performswell.
All three estimators exhibit bias for ̂𝛽. Interesting, the bias forMDLE andGMM-M are in opposite

directions. It is intuitive that the distribution of CLEER is between the other two estimators, however
there is no reason to expect CLEERwill be unbiased for ̂𝛽 in general.
To summarize these results, the standard practice of dropping zero or small share products, while

inducing bias, did not substantially affect any of the estimators. Bias did become apparent in our
extreme case once the share of products dropped rose to over 7 percent. Because this bias is entirely due
to selection affecting the PLMs, the first step of MDLE remains consistent even in the extreme case.
In cases where the share of zero share products significant and it is known these products were

available to consumers, our results indicate it may be fruitful to consider adjusting the second stage of
MDLE to account for selection. We leave such a possibility for future research.

J Technical Lemmas
In this appendix, we cover technical lemmas we refer to in our paper, which are relegated to the

online appendix due to space constraints.
J.1 Asymptotic normality of other parameters
Proof (of L1). The statement of L1 says that for ̂𝜐 = [(𝐵▿𝜉)▿, ̂ℒ▿

𝜃 , ̂ℒ▿
𝜋]

▿ and 𝜔 = [𝛽▿, 𝜃▿, 𝛿▿]▿,

(𝛬▿ℋ̂−1𝛬)−1/2𝛬▿(�̂� − 𝜔 ) ≃ 𝐴▿ ̂𝜐
𝑑
→𝒩(0, 𝕀), for matrices𝐴,ℋ.

Here we establish asymptotic normality of linear combinations of ( ̂𝛽, ̂𝜃, ̂𝛿). Theorem 2 is a special

16



case for𝛬▿ = [𝟘 𝕀 𝟘]. In theorem 2, we showed asymptotic normality of ̂𝜃 bywriting it as a linear

combination of ̂𝜐. Specifically, L8 showed that𝒱−1/2
𝜃 𝛤𝜃 ̂𝓆𝜃

𝑑
→𝒩(0, 𝕀). Recalling (48) and substituting

̂𝓇 = ̂ℒ⬩
𝜋 − ℒ◾−1

𝜋𝜋 (𝑠 − 𝜋 ) ≃ ̂ℒ𝜋,

̂𝓆𝜃 ≃ (∑
𝑚
(𝛯𝐵▿𝑚𝜉𝑚 + ̂ℒ𝜃𝑚 − ℒ𝜃𝜋𝑚ℒ−1

𝜋𝜋𝑚 ̂ℒ𝜋𝑚)) = [𝛯 𝕀 −ℒ𝜃𝜋ℒ−1
𝜋𝜋] ̂𝜐,

which implies for 𝐴▿ = 𝒱−1/2
𝜃 𝛤𝜃 [𝛯 𝕀 −ℒ𝜃𝜋ℒ−1

𝜋𝜋] we have 𝐴
▿ ̂𝜐

𝑑
→ 𝒩(0, 𝕀). To show asymptotic

normality of linear combinations of ( ̂𝛽, ̂𝜃, ̂𝛿), we reuse the same argument for a general𝛬.
Before providing the general form of 𝐴, note that the initial steps are identical: The quadratic

approximation for ( ̂𝜃, �̂�) obtained in theorem 2 (steps 1 and 2) can be reused verbatim.
In the general case,𝐴▿ will be of the form, (𝛬▿ℋ−1𝛬)−1/2𝛬▿𝛶, where ℋ̂−1 is a sample analog of,

ℋ−1 ≔ 𝕍(𝛶 ̂𝜐 ∣ 𝔸) = 𝛶
⎡
⎢
⎢
⎣

𝐵▿𝒱𝜉𝐵 𝟘 𝟘
𝟘 ℒ𝜃𝜃 ℒ𝜃𝜋

𝟘 ℒ𝜋𝜃 ℒ𝜋𝜋

⎤
⎥
⎥
⎦

𝛶▿.

For 𝛶,

𝛬▿(�̂� − 𝜔 ) ≃ 𝛬▿𝛶1
⎡
⎢
⎢
⎣

𝐵▿𝜉
̂𝜃 − 𝜃
̂𝛿 − 𝛿

⎤
⎥
⎥
⎦

≃ 𝛬▿𝛶1𝛶2
⎡
⎢
⎢
⎣

𝐵▿𝜉
̂𝜃 − 𝜃

�̂� − 𝜋

⎤
⎥
⎥
⎦

≃ 𝛬▿𝛶1𝛶2𝛶3𝜐,

where 𝛶1, 𝛶2, 𝛶3 are respectively given by,

⎡
⎢
⎢
⎣

(𝒫𝐵𝑋)+𝐵+
▿ 𝟘 (𝒫𝐵𝑋)+

𝟘 𝕀 𝟘
𝟘 𝟘 𝕀

⎤
⎥
⎥
⎦

,
⎡
⎢
⎢
⎣

𝕀 𝟘 𝟘
𝟘 𝕀 𝟘
𝟘 𝔻𝜃 𝔻𝜋

⎤
⎥
⎥
⎦

,
⎡
⎢
⎢
⎣

𝕀 𝟘 𝟘
𝟘 −𝒬−1

𝜃𝜃 𝟘
𝟘 𝟘 −𝒬−1

𝜋𝜋

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝕀 𝟘 𝟘
𝔻▿
𝜃𝒫𝐵

+▿ 𝕀 −ℒ𝜃𝜋ℒ−1
𝜋𝜋

𝔻▿
𝜋𝒫𝐵+

▿ −ℒ𝜋𝜃ℒ+
𝜃𝜃 𝕀

⎤
⎥
⎥
⎦

.

The formula for 𝛶1 is due to the fact that ̂𝛽 − 𝛽 = (𝒫𝐵𝑋)+ ̂𝛿 − 𝛽 = (𝒫𝐵𝑋)+[( ̂𝛿 − 𝛿 ) + 𝐵+▿𝐵▿𝜉],
𝛶2 is essentially applying the delta method to the transformation from 𝜋 to 𝛿, and 𝛶3 amounts to a
linearization of 𝐵▿𝜉, ̂𝜃 − 𝜃 , �̂� − 𝜋 . The product 𝛶 = 𝛶1𝛶2𝛶3 is for 𝒞 = (𝒫𝐵𝑋)+(𝕀 − 𝔻𝜃𝒬−1

𝜃𝜃𝒫 −
𝔻𝜋𝒬−1

𝜋𝜋𝔻
▿
𝜋𝒫)𝐵+

▿ given by,

⎡
⎢
⎢
⎣

𝒞 −(𝒫𝐵𝑋)+(𝔻𝜃𝒬−1
𝜃𝜃 − 𝔻𝜋𝒬−1

𝜋𝜋ℒ𝜋𝜃ℒ+
𝜃𝜃) −(𝒫𝐵𝑋)+(𝔻𝜋𝒬−1

𝜋𝜋 − 𝔻𝜃𝒬−1
𝜃𝜃ℒ𝜃𝜋ℒ−1

𝜋𝜋)
−𝒬−1

𝜃𝜃𝔻
▿
𝜃𝒫𝐵

+▿ −𝒬−1
𝜃𝜃 𝒬−1

𝜃𝜃ℒ𝜃𝜋ℒ−1
𝜋𝜋

𝟘 −(𝔻𝜃𝒬−1
𝜃𝜃 − 𝔻𝜋𝒬−1

𝜋𝜋ℒ𝜋𝜃ℒ+
𝜃𝜃) −(𝔻𝜋𝒬−1

𝜋𝜋 − 𝔻𝜃𝒬−1
𝜃𝜃ℒ𝜃𝜋ℒ−1

𝜋𝜋)

⎤
⎥
⎥
⎦

.

So 𝛶 transforms ̂𝜐 into ( ̂𝛽, ̂𝜃, ̂𝛿) up to negligible terms andℋ−1 is the variance of 𝛶 ̂𝜐 ≃ ( ̂𝛽, ̂𝜃, ̂𝛿).

J.2 Other lemmas referred to in the main text and app. B
Themodel implies that𝜋 is in the interior of ℿ. The following lemma establishes a bound for𝜋

and related objects following our assumptions, especially G.
Lemma 9 (Bounds for 𝛿 , 𝜋 , and related objects). Recall that 𝜅↑𝛿 = 2√2𝑐∗𝜉 log𝑀, 𝜅 = exp(−4𝜅↑𝛿), and
let 𝜅𝜋 = 𝜅3/4 = exp(−3𝜅↑𝛿), so 𝜅𝜋 ≻ 𝜅. Then, (a) ℙ(max𝑚,𝑗 |𝛿𝑗𝑚| > 𝜅↑𝛿) ≺ 1; (b)max𝑚,𝑗 𝜅𝜋/𝜋𝑗𝑚 ≺ 1
and max𝑚,𝑗 𝜅𝜋/𝑠𝑗𝑚 ≺ 1; (c) min𝑚 infℿ𝜅𝑐𝑚 [ ̂ℒ◾

𝑚(𝜋𝑚) / 𝑁𝑚] ≻ 𝜅𝜋 log(𝜅𝜋/𝜅); (d) For a constant 𝐶,
ℙ{max𝑚 sup𝛩×ℿ𝜅𝑚 λλλmax[𝔻𝜋𝑚(𝜃, 𝜋𝑚)] ≤ 𝐶𝜅−3} = 1; (e) For any 0 < 𝑝 < ∞ and some constant 𝐶
only depending on𝑝,max𝑚 𝔼{sup𝛩 λλλ

𝑝
max[𝔻𝜋𝑚(𝜃, 𝜋𝑚)]} ≤ 𝐶; (f) For any 0 < 𝑝 < ∞ and some constant
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𝐶 only depending on 𝑝,max𝑚 𝔼 sup𝛩×ℿ𝜅𝑚 𝟙(‖𝜋𝑚 − 𝜋𝑚‖ ≤ 𝜅)λλλ𝑝max[𝔻𝜋𝑚(𝜃, 𝜋𝑚)] ≤ 𝐶.
Proof. First (a). By the triangle inequality, for and some fixed𝐶 < ∞,

ℙ(max
𝑚,𝑗

|𝛿𝑗𝑚| > 𝜅↑𝛿) ≤ ℙ(∃𝑚, 𝑗: |𝜉𝑗𝑚| > 𝜅↑𝛿 − |𝑥▿𝑗𝑚𝛽 |)
G[i],H

≤ ℙ(∃𝑚, 𝑗: |𝜉𝑗𝑚| > 𝜅↑𝛿 − 𝐶)
Bonferroni

≤

∑
𝑚,𝑗

ℙ(|𝜉𝑗𝑚| > 𝜅↑𝛿 − 𝐶)
G[ii]

≤ 2𝑀 ̄𝐽 exp[−(𝜅↑𝛿 − 𝐶)2/(2𝑐∗𝜉)] ≺ 1.

For (b), for some fixed 𝑐 > 0,

𝜋𝑗𝑚 = ∫
𝑧,𝜈

exp[𝜇(𝜃 , 𝑧, 𝜈, 𝑥𝑗𝑚)] exp(𝛿𝑗𝑚)

∑𝑡 exp[𝜇(𝜃 , 𝑧, 𝜈, 𝑥𝑡𝑚)] exp(𝛿𝑡𝑚)
≥

exp(𝛿𝑗𝑚)
max𝑡 exp(𝛿𝑡𝑚)

∫
𝑧,𝜈

exp[𝜇(𝜃 , 𝑧, 𝜈, 𝑥𝑗𝑚)]
∑𝑡 exp[𝜇(𝜃 , 𝑧, 𝜈, 𝑥𝑡𝑚)]
G,H

≥ 𝑐 exp(𝛿𝑗𝑚 −max
𝑡

𝛿𝑡𝑚). (66)

Hence, for any𝐶 < ∞,

ℙ(min
𝑚,𝑗

𝜋𝑗𝑚 < 𝐶𝜅𝜋) ≤ ℙ[𝑐 exp(min
𝑚,𝑗

𝛿𝑗𝑚 −max
𝑚,𝑗

𝛿𝑗𝑚) < 𝐶𝜅𝜋] ≤ ℙ(−2max
𝑚,𝑗

|𝛿𝑗𝑚| < log
𝜅𝜋𝐶
𝑐 )

= ℙ(max
𝑚,𝑗

|𝛿𝑗𝑚| > −12 log
𝜅𝜋𝐶
𝑐 ) = ℙ(max

𝑚,𝑗
|𝛿𝑗𝑚| >

3
2𝜅

↑
𝛿 −

1
2 log

𝐶
𝑐 )

(a)

≺ 1,

which establishes the first half of the assertion. The other half then follows from L12(d).
Now (c). Suppose without loss of generality that within a market products are such that 𝜋1𝑚 =

min𝑗 𝜋𝑗𝑚. Then,

inf
ℿ𝜅𝑐𝑚

̂ℒ◾
𝑚(𝜋𝑚)
𝑁𝑚

= inf
ℿ𝜅𝑐𝑚

∑
𝑗
𝑠𝑗𝑚 log

𝑠𝑗𝑚
𝜋𝑗𝑚

≥ inf
𝜋1𝑚≤𝜅

(𝑠1𝑚 log
𝑠1𝑚
𝜋1𝑚

+ (1 − 𝑠1𝑚) log
1 − 𝑠1𝑚
1 − 𝜋1𝑚

).

By L12(d), the infimum is (for all𝑚 simultaneously) attained at 𝜋1𝑚 = 𝜅, such that the infimum is
bounded below by 𝑠1𝑚 log(𝑠1𝑚/𝜅)+ (1− 𝑠1𝑚) log[(1− 𝑠1𝑚)/(1− 𝜅)].The stated result then follows from
(b).
Next, (d). Note first that𝔻𝜋𝑚(𝜃, 𝜋𝑚) = ℚ−1

𝑚 (𝜃, 𝜋𝑚), where for 𝒮𝑚 = diag(𝓈𝑚),

ℚ𝑚 = ∫
𝑧,𝜈
(𝒮𝑚 − 𝓈𝑚𝓈

▿
𝑚) = ∫

𝑧,𝜈
𝒮1/2𝑚 [𝕀 − 𝒮−1/2𝑚 𝓈𝑚𝓈

▿
𝑚𝒮−1/2𝑚 ]𝒮1/2𝑚 ≥ ∫

𝑧,𝜈
𝒮𝑚𝓈0𝑚 ≥ min

𝑗
∫
𝑧,𝜈

𝓈𝑗𝑚𝓈0𝑚𝕀,

where the penultimate inequality follows from the fact that 𝕀 − 𝒮−1/2𝑚 𝓈𝑚𝓈
▿
𝑚𝒮−1/2𝑚 has eigenvalues

that are bounded below by 𝓈0𝑚.75 Analogous to the proof of (b), we have min𝑗 ∫𝑧,𝜈 𝓈𝑗𝑚𝓈0𝑚 ≥
𝐶3 exp(−3max𝑗 |𝛿𝑗𝑚|) for some fixed𝐶3 > 0. Consequently,

λλλmax[𝔻𝜋𝑚(𝜃, 𝜋𝑚)] =
1

λλλmin[ℚ𝑚(𝜃, 𝜋𝑚)]
≤ exp[3max

𝑗
|𝛿𝑗𝑚(𝜃, 𝜋𝑚)|] / 𝐶3. (67)

For uniformity, it remains to be shown thatmax𝛩max𝑚maxℿ𝜅𝑚 exp[max𝑗 |𝛿𝑗𝑚(𝜃, 𝜋𝑚)|] ≤ 𝐶𝛾/𝜅. By the
definitionofℿ𝜅

𝑚,𝜅 ≤ 𝜋0𝑚 = ∫[∑ exp(𝛿𝑗𝑚+𝜇𝑗𝑚)]−1 ≤ 𝐶𝛼 exp(−max𝑗 𝛿𝑗𝑚). Moreover,𝜅 ≤ min𝑗 𝜋𝑗𝑚 =
min𝑗 ∫ exp(𝛿𝑗𝑚 + 𝜇𝑗𝑚) / [∑ exp(𝛿𝑡𝑚 + 𝜇𝑡𝑚)] ≤ 𝐶𝛽 exp(min𝑗 𝛿𝑗𝑚). Combining these, we have for all
𝛿𝑗𝑚: 𝜅 / 𝐶𝛽 ≤ exp(𝛿𝑗𝑚) ≤ 𝐶𝛼 / 𝜅, and so exp(|𝛿𝑗𝑚|) ≤ max(𝐶𝛼, 𝐶𝛽) / 𝜅, which establishes (d).

75We use the fact that the smallest eigenvalue of 𝕀 − 𝑣𝑣▿ corresponds to the eigenvector 𝑣 and is equal to 1 − ‖𝑣‖2, which
for 𝑣 = 𝒮−1/2𝑚 𝓈𝑚 is equal to 1 −∑𝑗>0 𝓈𝑗𝑚 = 𝓈0𝑚.
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Penultimately, (e). Apply (67) for𝜋𝑚 = 𝜋𝑚. Using the analogous argument as follows (67), for some
fixed𝐶1 and all 𝜃 ∈ 𝛩,𝑚, 𝑗: exp[|𝛿𝑗𝑚(𝜃, 𝜋𝑚)|] ≤ 𝐶1/𝜋𝑗𝑚. Now, for some fixed𝐶2 and any 𝑝 > 0,

𝔼[(𝜋𝑗𝑚)−𝑝] ≤ 𝐶𝑝
2𝔼[exp(𝑝|𝛿𝑗𝑚|)]

triangle

≤ 𝐶𝑝
2𝔼[exp(𝑝|𝑥

▿
𝑗𝑚𝛽|) exp(𝑝|𝜉𝑗𝑚|)]

G[i],[ii], H[ii]

≤ ∞,

Finally, (f) follows from (e) and (b).

In the remainder, we (as earlier) use the symbols ℓ𝑖𝑗𝑚 = log 𝜍𝑖𝑗𝑚, ℓ𝑗𝑚 = log 𝜍𝑗𝑚 = 𝔼(ℓ𝑖𝑗𝑚 ∣ 𝔸), and
𝛥ℓ𝑖𝑗𝑚 = ℓ𝑖𝑗𝑚 − ℓ𝑗𝑚, and use a tilde to indicate when ℓ is used as a function of 𝛿 instead of 𝜋, e.g. ̃ℓ𝑖𝑗𝑚.
Lemma 10 (Uniform convergence of 𝛥 ̂ℒ⬩ and its derivatives). (a) Let 𝓇𝜖(𝜃) =
√max[𝜌id(𝜃), ̆𝜌id(𝜖)] log

2 𝐼+. Then, sup𝛩 |𝛥 ̂ℒ⬩(𝜃, 𝜋 )/𝓇𝜖(𝜃)| ≺ 1; (b) Let 𝓊 be a vector of nonnegative
integers indicating derivative order with respect to each element of 𝜓𝑚 = (𝜃, 𝜋𝑚), let |𝓊| denote the
sum of the elements in𝓊, and let𝓊𝑧 denote the number of derivatives with respect to elements of 𝜃𝑧.
Let further, 𝓇𝓊𝑚 = √𝐼𝑚𝜅−3|𝓊|(log 𝐼+)2+max(𝓊𝑧,1) + exp(−𝑁),where the exp(−𝑁) term serves to ensure
that we are not dividing by zero. Then, for |𝓊| > 0,max𝑚 sup𝛩×ℿ𝜅𝑚[|𝜕

𝓊𝛥 ̂ℒ⬩
𝑚(𝜃, 𝜋𝑚)|/𝓇𝓊𝑚] ≺ 1; and if

|𝓊| = 0 thenmax𝑚 sup𝛩×ℿ𝑚[|𝛥
̂ℒ⬩
𝑚(𝜃, 𝜋𝑚)|/𝓇𝓊𝑚] ≺ 1.

Proof. 𝛥 ̂ℒ⬩ is a sum over 𝐼 terms, so if 𝐼 does not grow then the results are trivial. So, suppose that
𝐼 ≻ 1.
We first show (a). WeuseL14(a) conditional on the ℐ𝑚’s. Sincewedonot need a result for eachmarket

separately, we have no use for the 𝑔 subscript in L14. Using the superscript L14 to distinguish objects in
L14 from objects here, take 𝜓L14 = 𝜃, 𝑛L14 = 𝐼, and write ̂𝕗L14(𝜃) = 𝛥 ̂ℒ⬩(𝜃, 𝜋 )/𝓇𝜖(𝜃) as∑𝑚∑ℐ𝑚

𝜁𝑖𝑚(𝜃)
for 𝜁𝑖𝑚 = ∑𝑗(𝑦𝑖𝑗𝑚 − 𝜍𝑖𝑗𝑚)[𝛥ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚) − 𝛥ℓ𝑖𝑗𝑚(𝜃 , 𝜋𝑚)]/𝓇𝜖(𝜃), where each (𝜁L14𝑖 , 𝑧L14𝑖 ) corresponds to
(𝜁𝑖𝑚, 𝑧𝑖𝑚) for one (𝑚 ∈ {1,…,𝑀}, 𝑖 ∈ ℐ𝑚) combination. We now verify the conditions of L14.
First, L14[i] is satisfied if wemake 𝜹L14 decrease at a sufficiently fast polynomial rate of 𝐼 because ̂𝕗L14

is differentiable and by L15(c). We now establish condition L14[ii] using L14(b), for whichwe need to
check L14[iii],[iv],[v]. L14[iii] holds by G[iii]. For [iv] and [v], take 𝜷L14 = log 𝐼, such that [iv] is satisfied.
Finally, [v]. Note that 𝕙L14 ⪯ ̆𝜌−1id (𝜖) log 𝐼 by L15(c). By L15(d), �̄�L142 ⪯ (log 𝐼)−4. To verify [v], first note
that exp(−𝑐/𝕙L14) and exp(−𝑐/�̄�L142) decrease faster than any power of 𝐼. Now, due to the compactness of
𝛩, we can choose𝑻L14 to increase at a (sufficiently fast) polynomial rate of 𝐼 (that depends on our choice
of 𝜹L14) tomake the requirements on𝑻L14, 𝜹L14 hold, showing L14[v]. This completes (a).
The proof of (b) follows the same steps as that of (a), except that we now do use the 𝑔 subscript in

L14. First the case |𝓊| > 0. Take 𝑔L14 = 𝑚, 𝑧L14𝑖𝑔 = 𝑧𝑖𝑚, 𝜓L14
𝑔 = (𝜃, 𝜋𝑚), 𝑛L14

𝑔 = 𝐼𝑚. Now ̂𝕗L14𝑚 (𝜃, 𝜋𝑚) =
𝜕𝓊𝛥 ̂ℒ⬩

𝑚(𝜃, 𝜋𝑚)/𝓇𝓊𝑚 = ∑ℐ𝑚
𝜁𝑖𝑚(𝜃, 𝜋𝑚) with 𝜁𝑖𝑚(𝜃, 𝜋𝑚) = ∑𝑗(𝑦𝑖𝑗𝑚 − 𝜍𝑖𝑗𝑚)𝜕𝓊𝛥ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚)/𝓇𝓊𝑚. First,

L14[i] is satisfied if we make 𝜹L14
𝑛𝑔 decrease at a sufficiently fast polynomial rate of 𝐼 because ̂𝕗L14𝑚 is

differentiable and by L15(c). We now establish condition L14[ii] using L14(b), for which we need to
check L14[iii],[iv],[v]. L14[iii] holds by G[iii]. For [iv] and [v], take 𝜷L14

𝑚 = log 𝐼, such that [iv] is satisfied.
Finally, [v]. By L15(c),max𝑚 𝕙L14

𝑚 ⪯ (log 𝐼)−2.
Further, noting that for implicit {𝑎𝑖𝑗𝑚}, 𝕍[∑ℐ𝑚

𝜁𝑖𝑚 ∣ ℐ𝑚] = 𝐼𝑚𝕍𝜁𝑖𝑚 = 𝐼𝑚𝕍[∑𝑗 𝑎𝑖𝑗𝑚] ≤
𝐼𝑚 ̄𝐽 ∑𝑗 𝔼𝑎

2
𝑖𝑗𝑚,

max
𝑚

�̄�L142
𝑚 ≤ ̄𝐽max

𝑚
{𝐼𝑚 sup

𝛩×ℿ𝜅𝑚
∑
𝑗
𝔼[𝜍𝑖𝑗𝑚(

𝜕𝓊𝛥ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚)
𝓇𝓊𝑚

)
2
]}

L15(c)

⪯ (log 𝐼)−4.

To verify [v], note thatmax𝑚 exp(−𝑐/𝕙L14
𝑚 ) andmax𝑚 exp(−𝑐/�̄�L142

𝑚 ) decrease faster than any power of 𝐼.
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Now, due to the compactness of 𝛩, we can choose𝑻L14
𝑛𝑔 to increase at a (sufficiently fast) polynomial rate

of 𝐼 (that depends on our choice of 𝜹L14
𝑛𝑔) tomake the requirements on𝑻L14

𝑛𝑔 , 𝜹L14
𝑛𝑔 hold, showing L14[v].

Finally, if |𝓊| = 0 then we do not have to take derivatives of 𝛿 and by L13 we have an upper bound on
ℓ𝑖𝑗𝑚 that applies to all of ℿ𝑚. The remainder of the proof is identical. This completes (b).

J.3 Lemmas referred to in app. J.2
Lemma 11 (𝛺 approximations). Statements (17a) to (17c),

max
̊𝑡∈[0,1]

‖
‖𝛤𝜃{�̂�𝜃𝜃[𝜃( ̊𝑡), 𝜋( ̊𝑡)] − 𝛺𝜃𝜃}𝛤𝜃

‖
‖ ≺ 1,

max
̊𝑡∈[0,1]

‖
‖𝛤𝜃{�̂�𝜃𝜋[𝜃( ̊𝑡), 𝜋( ̊𝑡)] − 𝛺𝜃𝜋}𝛤𝜋

‖
‖ ≺ 1,

max
̊𝑡∈[0,1]

‖
‖𝛤𝜋{�̂�

⬩
𝜋𝜋[𝜃( ̊𝑡), 𝜋( ̊𝑡)] − 𝛺⬩

𝜋𝜋}𝛤𝜋‖‖ ≺ 1,

hold.
Proof. Let ( ̃𝜃, �̃�) = (𝜃( ̊𝑡), 𝜋( ̊𝑡)), which by theMVT lies between ( ̂𝜃, �̂�) and (𝜃 , 𝜋 ). Wewill first show
that𝛤𝜃[ ̂ℒ𝜃𝜃( ̃𝜃𝑧, �̃�𝑧)−ℒ𝜃𝜃]𝛤𝜃 ≺ 1, which ismore challenging than thePLMcomponent. Wewill assume
𝐼 → ∞, since if it is fixed the result is trivial. For a convenient scaling, let 𝑅 be block diagonal with
blocks 𝕀 and 𝕀/𝜆 then all elements of 𝑅𝛤2𝜃𝑅 converge at rate 1/𝐼 (if micro identification dominates) or
faster (if identification comes from PLM).
Let ̂𝐾(𝜃, 𝜋),𝐾(𝜃, 𝜋) be the (𝑟, 𝑐) element of 𝛤𝜃 ̂ℒ𝜃𝜃(𝜃, 𝜋)𝛤𝜃, and 𝛤𝜃ℒ𝜃𝜃(𝜃, 𝜋)𝛤𝜃, respectively (to avoid

three-dimensional arrays of derivatives). Then, by adding and subtracting,

̂𝐾( ̃𝜃, �̃�) − 𝐾 = [𝛥 ̂𝐾( ̃𝜃, �̃�) − 𝛥 ̂𝐾 ] + 𝛥 ̂𝐾 + [𝐾( ̃𝜃, �̃�) − 𝐾 ] ≕ 1© + 2© + 3©.

First,

| 3©|
MVT
= |( ̃𝜃 − 𝜃 )▿𝐾𝜃( ̊𝜃, �̊�) + (�̃� − 𝜋 )▿𝐾𝜋( ̊𝜃, �̊�)|

tri., Schwarz

≤ ‖ ̂𝜃 − 𝜃 ‖⏟⎵⏟⎵⏟
Thm.1

⋅‖ 𝐾𝜃( ̊𝜃, �̊�)⏟⎵⏟⎵⏟
L15(f)

‖ + max
𝑚

‖�̂�𝑚 − 𝜋𝑚‖⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
Thm.1

∑
𝑚
‖ 𝐾𝜋𝑚( ̊𝜃, �̊�𝑚)⏟⎵⎵⏟⎵⎵⏟

L15(f)

‖ ≺ 1.

Further, since 𝔼 2©2 is the variance of a samplemean,

𝔼 2©2 = ∑
𝑚
𝔼 2©2

𝑚 ⪯ 1
𝐼2 ∑𝑚

𝐼𝑚 ≺ 1.

Finally, byMVT, triangle, and Schwarz inequalities,

| 1©| ≤ ‖ ̂𝜃 − 𝜃 ‖⏟⎵⏟⎵⏟
Thm.1

⋅‖ 𝛥 ̂𝐾𝜃( ̊𝜃, �̊�)⏟⎵⎵⏟⎵⎵⏟
L10(b)

‖ + max
𝑚

‖�̂�𝑚 − 𝜋𝑚‖⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
Thm.1

⋅∑
𝑚
‖ 𝛥 ̂𝐾𝜋𝑚( ̊𝜃, �̊�𝑚)⏟⎵⎵⎵⏟⎵⎵⎵⏟

L10(b)

‖ ≺ 1.

Now the PLM component, 𝛤𝜃[�̂�𝜃𝜃( ̃𝜃𝑧, �̃�𝑧) − 𝛷𝜃𝜃]𝛤𝜃. Note that𝛷 is quadratic in 𝛿(𝜃, 𝜋) and𝔻𝜃𝑚 =
−𝔻𝜋𝑚𝜕𝜃▿𝜎𝑚 and𝔻𝜋𝑚 are bounded near the truth by L9(f), so 𝛤𝜃[�̂�𝜃𝜃( ̃𝜃𝑧, �̃�𝑧) − 𝛷𝜃𝜃]𝛤𝜃 ≺ 1.
Summing the two components completes the proof. The remaining results follow analogously by

redefining𝐾 for the likelihood term and using the same argument for the PLM term.

The next lemma contains some simple results, several of which are well-known, albeit typically
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presented less conveniently (for us).
Lemma 12 (Trivial technical results). Recall that 𝐼+ = max(𝐼, e). (a) If {𝑎𝑖} are subgaussian with
commonOVP 𝑐𝑎 < ∞ thenmax𝑖 |𝑎𝑖| ≺ √𝑐𝑎 log 𝐼+; (b) for a fixed𝐶 < ∞, ∀𝜃 ∈ 𝛩𝑐

𝜖: ‖𝜃𝑧‖2 ≤ 𝐶‖𝜃−𝜃 ‖2𝜆;
(c) for a fixed𝐶 < ∞, ∀𝜃 ∈ 𝛩𝑐

𝜖: 𝜆2 ≤ 𝐶‖𝜃 − 𝜃 ‖2𝜆; (d)max𝑚,𝑗(√𝑁𝑚|𝑠𝑗𝑚 − 𝜋𝑗𝑚|/√𝜋𝑗𝑚) ≺ log𝑀.
Proof. First, (a). Suppose without loss of generality that ∀𝑖: 𝔼𝑎𝑖 = 0. Take𝐾 > 1 to obtain

ℙ(max
𝑖
|𝑎𝑖| > 𝐾√2𝑐𝑎 log 𝐼+)

Bonferroni

≤ ∑
𝑖
ℙ(|𝑎𝑖| > 𝐾√2𝑐𝑎 log 𝐼+)

fn. 20

≤ 2𝐼 exp(−𝐾2 log 𝐼+).

Let 𝐼 → ∞ followed by𝐾 → ∞.
Now (b). Since 𝜃 ∈ 𝛩𝑐

𝜖, ‖𝜃 − 𝜃 ‖2 ≥ 𝜖2. If ‖𝜃𝑧 − 𝜃 𝑧‖2 ≥ 𝜖2/2 then ‖𝜃𝑧‖2 ≤ 𝜃𝑧2⌀ ≤ (2𝜃𝑧2⌀ / 𝜖2)‖𝜃𝑧 −
𝜃 𝑧‖2 ≤ 𝐶1‖𝜃 −𝜃 ‖2𝜆, where𝐶1 = 2𝜃𝑧2⌀ / 𝜖2. Now suppose that ‖𝜃𝑧−𝜃 𝑧‖2 < 𝜖2/2. Then by the triangle
inequality, ‖𝜃𝜈 − 𝜃 𝜈‖2 ≥ 𝜖2/2. Take 𝐶2 = 2 + 4/𝜖2. Then, ‖𝜃𝑧‖2 ≤ 2(‖𝜃𝑧 − 𝜃 𝑧‖2 + 𝜆2) ≤ 2[‖𝜃𝑧 −
𝜃 𝑧‖2 + 𝜆2‖𝜃𝜈 − 𝜃 𝜈‖2/(𝜖2/2)] ≤ 𝐶2‖𝜃 − 𝜃 ‖2𝜆.Take𝐶 = max(𝐶1, 𝐶2).
For (c), note that for 𝜆 > 0 and any 𝜃 ∈ 𝛩𝑐

𝜖, ‖𝜃 − 𝜃 ‖2𝜆 = ‖𝜃𝑧 − 𝜃 𝑧‖2 + 𝜆2‖𝜃𝜈 − 𝜃 𝜈‖2 ≥ ‖𝜃 −
𝜃 ‖2min(𝜆2, 1) ≥ 𝜖2min(𝜆2, 1).Take𝐶 = 𝜖2.
Finally, (d). We have,

ℙ(max
𝑚,𝑗

(√𝑁𝑚|𝑠𝑗𝑚 − 𝜋𝑗𝑚|/√𝜋𝑗𝑚) > log𝑀 || 𝔸)
Bonferroni

≤ ∑
𝑚,𝑗

ℙ(√𝑁𝑚|𝑠𝑗𝑚 − 𝜋𝑗𝑚| > √𝜋𝑗𝑚 log𝑀 || 𝔸)

Bernstein

≤ 2∑
𝑚,𝑗

exp(−
3𝑁𝑚𝜋𝑗𝑚 log2𝑀

6𝑁𝑚𝜋𝑗𝑚(1 − 𝜋𝑗𝑚) + 2√𝑁𝑚𝜋𝑗𝑚 log𝑀
) ≤ 2∑

𝑚,𝑗
exp(−

min(log2𝑀,√𝑁𝑚𝜋𝑗𝑚 log𝑀
6 )

L9(b),C

≺ 1.

Lemma 13 (Uniformupper boundsoncontributions to themicro likelihood). |𝛥ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚)| ≤ 𝐶‖𝜃𝑧‖⋅
(‖𝑧𝑖𝑚‖ + 𝐶).
Proof. Recall that ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚) = log 𝜍𝑖𝑗𝑚(𝜃, 𝜋𝑚) and ℓ𝑗𝑚(𝜃, 𝜋𝑚) = log 𝜍𝑗𝑚(𝜃, 𝜋𝑚). Let 𝑟𝑗𝑚(𝜈) =
∑𝑘 𝜃

𝜈
𝑘𝑥

𝜈
𝑗𝑚(𝑘)𝜈𝑘 + 𝛿𝑗𝑚 where 𝑥𝜈𝑗𝑚 represents the elements of 𝑥𝑗𝑚 associated with 𝜃𝜈 (i.e., the elements of

𝑥𝑗𝑚with randomcoefficients). Because of G[i], H[i], and the Schwarz inequality, |∑𝑘 𝜃
𝑧
𝑘𝑥𝑗𝑚(𝑘)𝑧𝑖𝑚(𝑘)| ≤

𝐶1‖𝑧𝑖𝑚‖ ⋅ ‖𝜃𝑧‖. So, for all 𝜃, 𝜋𝑚:

𝜍𝑖𝑗𝑚(𝜃, 𝜋𝑚) = ∫
𝜈

exp[∑𝑘 𝜃
𝑧
𝑘𝑥𝑗𝑚(𝑘)𝑧𝑖𝑚(𝑘) + 𝑟𝑗𝑚]

∑𝑡 exp[∑𝑘 𝜃
𝑧
𝑘𝑥𝑡𝑚(𝑘)𝑧𝑖𝑚(𝑘) + 𝑟𝑡𝑚]

≤ ∫
𝜈

exp[𝐶1‖𝑧𝑖𝑚‖ ⋅ ‖𝜃𝑧‖] exp[𝑟𝑗𝑚]
∑𝑡 exp[−𝐶1‖𝑧𝑖𝑚‖ ⋅ ‖𝜃

𝑧‖] exp[𝑟𝑡𝑚]

≤ exp(2𝐶1‖𝑧𝑖𝑚‖ ⋅ ‖𝜃𝑧‖)∫
𝜈

exp(𝑟𝑗𝑚)
∑𝑡 exp(𝑟𝑡𝑚)

;

𝜋𝑗𝑚 = 𝜍𝑗𝑚(𝜃, 𝜋𝑚) = ∫
𝑧
∫
𝜈

exp[∑𝑘 𝜃
𝑧
𝑘𝑥𝑗𝑚(𝑘)𝑧 + 𝑟𝑗𝑚]

∑𝑡 exp[∑𝑘 𝜃
𝑧
𝑘𝑥𝑡𝑚(𝑘)𝑧 + 𝑟𝑡𝑚]

≥ (∫
𝑧

≕𝕗(𝜃𝑧,𝑧)

⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞exp(−2𝐶1‖𝜃𝑧‖ ⋅ ‖𝑧‖))(∫
𝜈

exp(𝑟𝑗𝑚)
∑𝑡 exp(𝑟𝑡𝑚)

),

where the final line applies the inequality oppositely on numerator and denominator respectively.
Then for 𝐶2 = 2𝐶1 sup𝛩 ∫𝑧 ‖𝑧‖𝕗(𝜃

𝑧, 𝑧) / ∫𝑧 𝕗(𝜃
𝑧, 𝑧),76 we have ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚) − ℓ𝑗𝑚(𝜃, 𝜋𝑚) ≤

log exp[‖𝜃𝑧‖(2𝐶1‖𝑧𝑖𝑚‖+𝐶2)] = ‖𝜃𝑧‖(2𝐶1‖𝑧𝑖𝑚‖+𝐶2).This establishes an upper bound. A lower bound
can be obtained analogously.

L14 below shows a general uniform convergence result for growing vectors of functions. We need L14 in

76This definition of 𝐶2 is motivated the MVT expansion around 𝜃𝑧 = 0, | log∫𝑧 𝕗(𝜃
𝑧, 𝑧)| ≤ | log 1| + 2𝐶1∫𝑧 ‖𝑧‖𝕗( ̊𝜃𝑧, 𝑧) /

∫𝑧 𝕗( ̊𝜃𝑧, 𝑧).

21



ourproof, becauseas𝑀grows,weneed𝑀different randomfunctionsof (𝜃, 𝜋𝑚) to convergeuniformly in
both the arguments and in𝑚. For example, inL10(b)weneedmax𝑚=1,…,𝑀 sup𝛩𝑐

𝜖×ℿ𝜅𝑚
‖𝛥 ̂ℒ⬩

𝑚(𝜃, 𝜋𝑚)/𝓇𝓊𝑚‖
to converge.
Although there aremany uniform convergence results in the literature, we have failed to find one

that covers our case. Specifically, the fact that we have an increasing number𝑀 of functions and an
increasing number of parameter vectors. Nevertheless, L14 uses a familiar method of proof.
Lemma 14 (Uniform convergence over growing vectors of functions). For each of a possibly growing
number of 𝑮 groups indexed by 𝑔 = 1,…,𝑮, we define a parameter space𝛹𝑔, a true parameter vector
𝜓𝑔 , and a sequence of independent random vectors {𝑣𝑖𝑔}, with 𝑖 ∈ {1,…, 𝑛𝑔}. We partition each space
𝛹𝑔 into 𝑻𝑛𝑔 sets 𝛹𝑔1,…,𝛹𝑔𝑻𝑛𝑔 and let 𝜹𝑛𝑔 = max𝑡=1,…,𝑻𝑛𝑔 sup𝜓𝑔,𝜓∘𝑔∈𝛹𝑔𝑡

‖𝜓𝑔 − 𝜓∘𝑔‖ denote the greatest
distance possible between two points in the same𝛹𝑔𝑡. Let ̄𝜓𝑔𝑡 be an arbitrary point in each𝛹𝑔𝑡. Define
functions ̂𝕗𝑛𝑔: 𝛹𝑔 → ℝ𝑑𝜓𝑔 , where ̂𝕗𝑛𝑔(𝜓𝑔) = ̂𝕗𝑔[𝜓𝑔, {𝑣𝑖𝑔}].
(a) If [i]max𝑔 sup𝜓𝑔,𝜓∘𝑔∈𝛹𝑔:‖𝜓𝑔−𝜓∘𝑔‖≤𝜹𝑛𝑔

‖ ̂𝕗𝑛𝑔(𝜓𝑔) − ̂𝕗𝑛𝑔(𝜓∘𝑔)‖ ≺ 1; and [ii]max𝑔,𝑡 ‖ ̂𝕗𝑛𝑔( ̄𝜓𝑔𝑡)‖ ≺ 1; then

max𝑔 sup𝛹𝑔
‖ ̂𝕗𝑛𝑔(𝜓𝑔)‖ ≺ 1.

(b) Suppose that we can write ̂𝕗𝑛𝑔(𝜓𝑔) = ∑𝑛𝑔
𝑖=1 𝜁𝑔(𝜓𝑔, 𝑣𝑖𝑔). Let 𝑧𝑖𝑔 be a subvector of 𝑣𝑖𝑔 for which

∀𝑔, 𝑖, 𝜓𝑔: 𝔼[𝜁𝑔(𝜓𝑔, 𝑣𝑖𝑔) ∣ 𝑧𝑖𝑔] = 0. Define �̄�2𝑔 = sup𝛹𝑔
∑𝑖 ‖𝕍𝜁𝑔(𝜓𝑔, 𝑣𝑖𝑔)‖. Let for some 𝜷𝑔, 𝕙𝑔 ≔ 𝕙(𝜷𝑔) =

esssup sup𝛹𝑔
[‖𝜁𝑔(𝜓𝑔, 𝑣𝑖𝑔)‖𝟙(‖𝑧𝑖𝑔‖ ≤ 𝜷𝑔)]. Then [ii] is satisfied if [iii] 𝑧𝑖𝑔 is subgaussian with OVP 𝑐∗𝑧;

[iv]∑𝑔 𝑛𝑔 exp[−𝜷
2
𝑔/(2𝑐∗𝑧)] ≺ 1; [v] for any fixed 𝜺 > 0,∑𝑔 𝑻𝑛𝑔 exp[−3𝜺

2/(6�̄�2𝑔 + 2𝕙𝑔𝜺)] ≺ 1.
Proof. Consider (a). We have by the triangle inequality,

max
𝑔

sup
𝛹𝑔

‖ ̂𝕗𝑛𝑔(𝜓𝑔)‖ = max
𝑔,𝑡

sup
𝛹𝑔𝑡

‖ ̂𝕗𝑛𝑔(𝜓𝑔)‖ ≤ max
𝑔,𝑡

sup
𝜓𝑔∈𝛹𝑔𝑡

‖ ̂𝕗𝑛𝑔(𝜓𝑔) − ̂𝕗𝑛𝑔( ̄𝜓𝑔𝑡)‖ +max
𝑔,𝑡

‖ ̂𝕗𝑛𝑔( ̄𝜓𝑔𝑡)‖
[i],[ii]

≺ 1.

Now (b). For 𝜺 > 0, write

ℙ[max
𝑔,𝑡

‖ ̂𝕗𝑛𝑔( ̄𝜓𝑔𝑡)‖ > 𝜺] = ℙ(max
𝑔,𝑡

‖∑
𝑖
𝜁𝑔( ̄𝜓𝑔𝑡, 𝑣𝑖𝑔)‖ > 𝜺)

≤ ℙ(max
𝑔,𝑡

‖
‖∑

𝑖
𝜁𝑔( ̄𝜓𝑔𝑡, 𝑣𝑖𝑔)𝟙(‖𝑧𝑖𝑔‖ ≤ 𝜷𝑔)‖‖ > 𝜺) + ℙ(max

𝑔,𝑖
‖𝑧𝑖𝑔‖ > 𝜷𝑔)

Bonferroni,[iii]

≤ ∑
𝑔,𝑡
ℙ(‖∑

𝑖
𝜁𝑔( ̄𝜓𝑔𝑡, 𝑣𝑖𝑔)𝟙(‖𝑧𝑖𝑔‖ ≤ 𝜷𝑔)‖ > 𝜺) +∑

𝑔,𝑖
exp[−𝜷2𝑔/(2𝑐∗𝑧)]

Bernstein,[iv]

≤ 2∑
𝑔,𝑡
exp(− 3𝜺2

6�̄�2𝑔 + 2𝕙𝑔𝜺
) + 𝑜(1)

[v]
= 𝑜(1) + 𝑜(1) ≺ 1.

The following lemma provides bounds on derivatives of (contributions to) themicro log likelihood,
̂ℒ⬩, and its expectation when 𝜋 is in the interior of its parameter space, i.e., 𝜋 ∈ ℿ𝜅. It is used, for

example, in step 4 of theorem 1 and in the proof of theorem 2, after consistency of �̂� has been shown
which implies �̂� ∈ ℿ𝜅 with probability approaching one. For notational convenience, recall ℓ𝑖𝑗𝑚 =
log 𝜍𝑖𝑗𝑚, ℓ𝑗𝑚 = log 𝜍𝑗𝑚, and 𝛥ℓ𝑖𝑗𝑚 = ℓ𝑖𝑗𝑚 − ℓ𝑗𝑚. Now, since 𝜍𝑗𝑚(𝜃, 𝜋) = 𝜋, we have ̂ℒ⬩(𝜃, 𝜋) =
−∑𝑖𝑗𝑚𝐷𝑖𝑗𝑚𝑦𝑖𝑗𝑚[𝛥ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚) − 𝛥ℓ𝑖𝑗𝑚(𝜃 , 𝜋𝑚) ].
Lemma 15. Let 𝓊 be a vector of nonnegative integers indicating the number of partial deriva-
tives with respect to elements of 𝜓𝑚 = (𝜃, 𝜋𝑚), let 𝓊𝑧 denote the total number of partial deriva-
tives with respect to elements of 𝜃𝑧, and |𝓊| the total number of partial derivatives. Recall
that 𝛥ℓ𝑖𝑗𝑚 = ℓ𝑖𝑗𝑚 − ℓ𝑗𝑚. (a) If 𝓊𝑧 = 0 then ∀𝜃, 𝜋𝑚 ∈ 𝛩 × ℿ𝜅

𝑚: 𝜕𝓊𝛥ℓ𝑖𝑗𝑚(0, 𝜃𝜈, 𝜋𝑚) =
0; (b) If 𝓊𝑧 = 1 then ∀𝜃, 𝜋𝑚 ∈ 𝛩 × ℿ𝜅

𝑚: 𝔼[𝜕𝓊𝛥ℓ𝑖𝑗𝑚(0, 𝜃𝜈, 𝜋𝑚) ∣ 𝔸] = 0; (c) For
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a constant 𝐶 < ∞: ℙ[max𝑚max𝛩×ℿ𝜅𝑚 |𝜕
𝓊ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚)| > 𝐶‖𝔻𝜋𝑚(𝜃, 𝜋𝑚)‖|𝓊|‖𝑧𝑖𝑚‖max(𝓊𝑧,1) ∣

𝔸] = 0 and ℙ[max𝑚max𝛩×ℿ𝜅𝑚 |𝜕
𝓊ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚)| > 𝐶𝜅−3|𝓊|‖𝑧𝑖𝑚‖max(𝓊𝑧,1) ∣ 𝔸] = 0;

(d) sup𝜃∑𝑚∑ℐ𝑚
𝕍{∑𝑗(𝑦𝑖𝑗𝑚 − 𝜍𝑖𝑗𝑚)[𝛥ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚) − 𝛥ℓ𝑖𝑗𝑚]} / ‖𝜃 − 𝜃 ‖2𝜆 ⪯ 1; (e) For

some fixed 𝐶 > 0, max𝑚 sup𝛩𝑐
𝜖×ℿ𝜅

(|𝜕𝓊ℒ⬩
𝑚(𝜃, 𝜋𝑚)|/{max(𝐼𝑚, 1)λλλ

|𝓊|
max[𝔻𝜋𝑚(𝜃, 𝜋𝑚)]}) ≤ 𝐶 and

max𝑚 sup𝛩𝑐
𝜖×ℿ𝜅

(|𝜕𝓊ℒ⬩
𝑚(𝜃, 𝜋𝑚)|/max(𝐼𝑚, 1) ⪯ 𝜅−3|𝓊|; (f) Let 𝜏𝑚 = 𝟙(‖𝜋𝑚 − 𝜋𝑚‖ ≤ 𝜅). If 𝓊𝑧 ≤ 1,

then for some fixed𝐶, max𝑚 𝔼|𝜕ᵆℒ⬩
𝑚(𝜃, 𝜋𝑚)𝜏𝑚|/max(𝐼𝑚, 1) ≤ 𝐶(‖𝜃𝑧‖ + 𝜆)2−𝓊𝑧.

Proof. (a) and (b) are trivial since ∀𝜃𝜈, 𝜋𝑚: 𝛥ℓ𝑖𝑗𝑚(0, 𝜃𝜈, 𝜋𝑚) = 0 and ∀𝜃𝜈, 𝜋𝑚: 𝔼[𝛥ℓ𝜃𝑧𝑖𝑗𝑚(0, 𝜃𝜈, 𝜋𝑚) ∣
𝔸𝑚] = 0, and hence so are all their derivatives with respect to 𝜃𝜈, 𝜋𝑚.
Now (c). Write ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚) = ̃ℓ𝑖𝑗𝑚[𝜃, 𝛿𝑚(𝜃, 𝜋𝑚)]. The partial derivatives of ̃ℓ𝑖𝑗𝑚 with respect to

𝜃𝑧𝑘 , 𝜃
𝜈
𝑘 , 𝛿𝑘𝑚 are given by

̃ℓ𝛿𝑘𝑖𝑗𝑚 = 𝟙(𝑗 = 𝑘) −
∫ 𝓈𝑖𝑗𝑚𝓈𝑖𝑘𝑚

𝜎𝑖𝑗𝑚
⇒ | ̃ℓ𝛿𝑘𝑖𝑗𝑚| ≤ 1;

̃ℓ𝜃𝑧𝑘𝑖𝑗𝑚 = 𝑧𝑖𝑚(𝑘)(𝑥𝑗𝑚(𝑘) −∑
𝑡
𝑥𝑡𝑚(𝑘)

∫𝓈𝑖𝑗𝑚𝓈𝑖𝑘𝑚
𝜎𝑖𝑗𝑚

) ⇒ | ̃ℓ𝜃𝑧𝑘𝑖𝑗𝑚|
G[i][iii]

≤ 𝐶|𝑧𝑖𝑚(𝑘)|;

̃ℓ𝜃𝜈𝑘𝑖𝑗𝑚 = 1
𝜎𝑖𝑗𝑚

∫𝓈𝑖𝑗𝑚𝜈𝑘(𝑥𝜈𝑗𝑚(𝑘) −∑
𝑡
𝓈𝑖𝑡𝑚𝑥𝜈𝑡𝑚(𝑘)) ⇒ | ̃ℓ𝜃𝜈𝑘𝑖𝑗𝑚|

G[i]

≤ 𝐶.

(68)

Now, by the chain rule, ℓ𝜋𝑖𝑗𝑚 = 𝔻▿
𝜋𝑚 ̃ℓ𝛿𝑖𝑗𝑚 and ℓ𝜃𝑖𝑗𝑚 = ̃ℓ𝜃𝑖𝑗𝑚+𝔻

▿
𝜃𝑚

̃ℓ𝛿𝑖𝑗𝑚 = ̃ℓ𝜃𝑖𝑗𝑚−𝜕𝜃𝜎
▿
𝑚𝔻

▿
𝜋𝑚 ̃ℓ𝛿𝑖𝑗𝑚.77

Each partial derivative of ℓ𝑖𝑗𝑚 with respect to any element of 𝜃 or𝜋𝑚 adds a factor of (a norm of)𝔻𝜋𝑚.
For |𝓊| > 0, result (c) then follows from the bounds in (68). If |𝓊| = 0 then (c) follows from L13.
For, (d), define 𝑎𝑖𝑗𝑚(𝜃) = 𝛥ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚) − 𝛥ℓ𝑖𝑗𝑚 and let𝐶 be a constant,

𝕍(∑
𝑗
(𝑦𝑖𝑗𝑚 − 𝜍𝑖𝑗𝑚)𝑎𝑖𝑗𝑚(𝜃)) ≤ ̄𝐽 ∑

𝑗
𝔼[𝜍𝑖𝑗𝑚𝑎2𝑖𝑗𝑚(𝜃)]

MVT
= ̄𝐽 ∑

𝑗
𝔼{𝜍𝑖𝑗𝑚[(𝜃𝑧 − 𝜃 𝑧)▿𝑎𝜃𝑧𝑖𝑗𝑚( ̊𝜃) + (𝜃𝜈 − 𝜃 𝜈)▿𝑎𝜃𝜈𝑖𝑗𝑚( ̊𝜃)]2}

MVT,(a)
= ̄𝐽 ∑

𝑗
𝔼{𝜍𝑖𝑗𝑚[(𝜃𝑧 − 𝜃 𝑧)▿𝑎𝜃𝑧𝑖𝑗𝑚( ̊𝜃) + (𝜃𝜈 − 𝜃 𝜈)▿𝑎𝜃𝜈𝜃𝑧𝑖𝑗𝑚( ̈𝜃𝑧, ̊𝜃𝜈) ̊𝜃𝑧]2}

(c)

≤ 𝐶(‖𝜃𝑧 − 𝜃 𝑧‖2 + ‖𝜃𝜈 − 𝜃 𝜈‖2 ⋅ ‖ ̊𝜃𝑧‖2)max
𝜃

max
1≤𝑝≤4

𝔼‖𝔻𝜋𝑚(𝜃, 𝜋𝑚)‖𝑝 ≤ 𝐶2‖𝜃 − 𝜃 ‖2𝜆,

where the last inequality follows from L9(d), and ‖ ̊𝜃𝑧‖ ≤ ‖𝜃𝑧 − 𝜃 𝑧‖ + 𝜆 by the triangle inequality.
The first half of (e) follows trivially from (c) and the second half from L9(d).
Finally (f). First, suppose𝓊𝑧 = 1. For some 0 ≤ 𝑡 ≤ 1,

𝜕𝓊ℒ⬩
𝑚(𝜃, 𝜋𝑚)𝜏𝑚 = 𝐼𝑚∑

𝑗
𝔼(𝜍𝑖𝑗𝑚(𝜃 , 𝜋𝑚)𝜕𝓊𝛥ℓ𝑖𝑗𝑚(𝜃, 𝜋𝑚)𝜏𝑚 ∣ 𝔸)

MVT
= 𝐼𝑚∑

𝑗
𝔼([𝜍𝑗𝑚(0, 𝜃 𝜈, 𝜋𝑚) + 𝜃 𝑧▿𝜕𝜃𝑧𝜍𝑖𝑗𝑚(𝑡𝜃 𝑧, 𝜃 𝜈, 𝜋𝑚)]×

[𝜕𝓊𝛥ℓ𝑖𝑗𝑚(0, 𝜃𝜈, 𝜋𝑚) + 𝜃𝑧▿𝜕𝜃𝑧𝜕𝓊𝛥ℓ𝑖𝑗𝑚(𝑡𝜃𝑧, 𝜃𝜈, 𝜋𝑚)]𝜏𝑚 || 𝔸). (69)

Multiplying out the right-hand side of (69) yields four terms, one of which is zero by (b). The other three
are by L9(f) bounded in absolute value by a constant times 𝐼𝑚 times one of ‖𝜃𝑧‖, 𝜆, 𝜆‖𝜃𝑧‖.
Second, if 𝓊𝑧 = 0, take the mean value expansion around 𝜃𝑧 to the second order, which yields

77By the implicit function theorem on 𝛿[𝜃, 𝜍(𝜃, ̄𝛿)] = ̄𝛿 which yields𝔻𝜃 +𝔻𝜋𝜕𝜃▿𝜍 = 0.
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nine terms all of which are bounded by a constant times 𝐼𝑚 times one of ‖𝜃𝑧‖2, 𝜆2, and higher powers
thereof.

K Additional Monte Carlo Results
In this appendix, we display results from theMonte Carlo experiments in table format. Each table is

a different statistic and each row is a different experiment. Themajor columns denote parameters, (𝜃𝑧1 ,
𝜃𝑧2 , 𝜃𝜈1 , 𝜃𝜈2 , and 𝛽1) and the sub-columns denote the threemethods, CLEER, GMM-M, andMDLE.
The first set of five tables (for the five statistics) displays results for all of the experiments, except the

integration bias experiments. The sixth table displays the results for the integration bias experiments,
where we combine all of the statistics into a single table.
The five statistics we display are

1. median absolute error;
2. bias;
3. acceptance probability as a percentage;
4. median standard error;
5. the percentage of runs where the estimate was at the zero boundary.

The results generally confirm the plots and surrounding discussion in Section 7 in the main text.
We observe that for small true values of 𝜃𝜈, some runs of the estimator converge to the zero boundary,
for example see experiments [6], [9], and [11]. This happens most frequently for GMM-M for all
three specifications (recall that we even start GMM-M from the truth), and the problem get smaller for
CLEER andMDLE as 𝜃𝑧 grows, but the problem persists for GMM-M regardles of 𝜃𝑧. We exclude these
cases from the calculations in acceptance probability and standard error tables.
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𝜃𝑧1 𝜃𝑧2 𝜃𝜈1 𝜃𝜈2 𝛽1
CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE

[1] baseline* 0.017 0.034 0.022 0.014 0.020 0.022 0.032 0.068 0.041 0.026 0.034 0.043 0.038 0.051 0.040

Vary 𝑆𝑚
[2] 𝑆𝑚 = 250 0.026 0.036 0.046 0.020 0.025 0.045 0.051 0.069 0.087 0.033 0.038 0.083 0.041 0.047 0.063
[3] 𝑆𝑚 = 4, 000 0.011 0.031 0.011 0.010 0.016 0.011 0.020 0.067 0.021 0.019 0.032 0.021 0.034 0.052 0.034

Vary𝑀
[4]𝑀 = 10 0.020 0.067 0.021 0.019 0.040 0.022 0.039 0.149 0.041 0.037 0.080 0.043 0.072 0.110 0.073
[5]𝑀 = 1, 000 0.009 0.012 0.021 0.007 0.011 0.021 0.015 0.018 0.042 0.009 0.012 0.042 0.012 0.012 0.026

Vary (𝜃𝑧, 𝜃𝜈)
[6] (0.3, 0.3) 0.009 0.013 0.009 0.007 0.010 0.010 0.070 0.138 0.079 0.051 0.078 0.091 0.034 0.041 0.036
[7] (0.3, 1.0) 0.011 0.013 0.020 0.008 0.010 0.019 0.061 0.068 0.129 0.033 0.033 0.124 0.045 0.050 0.072
[8] (0.3, 2.0) 0.014 0.015 0.070 0.010 0.012 0.068 0.102 0.086 0.594 0.049 0.043 0.578 0.060 0.056 0.296
[9] (1.0, 0.3) 0.012 0.030 0.013 0.011 0.020 0.013 0.032 0.127 0.034 0.034 0.075 0.041 0.031 0.045 0.031
[10] (1.0, 2.0) 0.030 0.036 0.071 0.019 0.021 0.072 0.081 0.090 0.186 0.048 0.045 0.181 0.055 0.061 0.098
[11] (2.0, 0.3) 0.018 0.054 0.019 0.016 0.036 0.018 0.030 0.183 0.030 0.026 0.110 0.029 0.033 0.046 0.033
[12] (2.0, 1.0) 0.025 0.069 0.028 0.022 0.036 0.026 0.026 0.081 0.029 0.023 0.045 0.027 0.036 0.055 0.038
[13] (2.0, 2.0) 0.043 0.067 0.064 0.033 0.038 0.063 0.056 0.087 0.085 0.043 0.051 0.080 0.040 0.056 0.049

Vary 1st Stage
[14] 𝑎 = 0.15 0.021 0.217 0.024 0.014 0.044 0.022 0.042 0.482 0.045 0.027 0.042 0.043 0.131 0.296 0.137
[15] 𝑎 = 1.00 0.013 0.017 0.021 0.014 0.018 0.021 0.027 0.034 0.043 0.026 0.037 0.042 0.024 0.025 0.028

This table displays theMedian Absolute Error for ourMonte Carlo analysis across different experiments for the fourmain parameters of interest.
* Baseline is𝑀 = 50, 𝑆𝑚 = 1, 000, 𝜃𝑧1 = 1.0, and 𝑎 = 0.5.

Table 4:Monte Carlo Results: Median Absolute Error
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𝜃𝑧1 𝜃𝑧2 𝜃𝜈1 𝜃𝜈2 𝛽1
CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE

[1] baseline* -0.001 +0.004 -0.003 -0.001 +0.003 -0.004 -0.002 +0.003 -0.005 -0.002 +0.004 -0.011 +0.001 +0.001 +0.001

Vary 𝑆𝑚
[2] 𝑆𝑚 = 250 -0.001 +0.002 -0.002 -0.002 +0.001 -0.005 -0.007 -0.004 -0.011 -0.002 -0.001 -0.007 -0.002 -0.003 -0.002
[3] 𝑆𝑚 = 4, 000 -0.004 +0.001 -0.005 -0.003 +0.002 -0.004 -0.008 -0.000 -0.009 -0.005 +0.002 -0.007 -0.002 -0.001 -0.001

Vary𝑀
[4]𝑀 = 10 -0.004 +0.005 -0.006 -0.003 +0.006 -0.002 -0.008 -0.010 -0.009 -0.005 +0.006 -0.005 +0.009 +0.004 +0.013
[5]𝑀 = 1, 000 +0.000 +0.001 -0.006 +0.001 +0.001 -0.007 +0.001 +0.001 -0.008 +0.001 +0.001 -0.017 +0.001 +0.001 -0.005

Vary (𝜃𝑧, 𝜃𝜈)
[6] (0.3, 0.3) -0.001 +0.002 -0.002 -0.000 -0.000 +0.001 -0.036 -0.031 -0.017 -0.010 -0.034 -0.000 -0.005 -0.001 -0.002
[7] (0.3, 1.0) -0.001 +0.000 -0.007 -0.000 +0.001 -0.007 -0.013 +0.001 -0.055 -0.005 +0.001 -0.056 -0.002 +0.002 -0.023
[8] (0.3, 2.0) -0.010 +0.000 -0.070 -0.002 +0.001 -0.068 -0.092 +0.002 -0.594 -0.037 +0.004 -0.577 -0.040 +0.003 -0.295
[9] (1.0, 0.3) -0.001 +0.007 -0.002 -0.001 +0.001 -0.001 -0.007 -0.026 -0.003 -0.007 -0.034 -0.005 -0.000 +0.004 +0.000
[10] (1.0, 2.0) -0.025 +0.001 -0.070 -0.015 +0.000 -0.071 -0.069 -0.000 -0.185 -0.038 -0.002 -0.180 -0.033 -0.004 -0.094
[11] (2.0, 0.3) -0.003 +0.016 -0.004 -0.002 +0.007 -0.001 -0.007 -0.034 -0.004 -0.004 -0.044 -0.001 +0.002 +0.013 +0.002
[12] (2.0, 1.0) -0.004 +0.002 -0.006 -0.004 +0.003 -0.007 -0.004 -0.004 -0.006 -0.004 +0.001 -0.007 -0.001 -0.003 -0.001
[13] (2.0, 2.0) -0.029 +0.002 -0.059 -0.023 -0.001 -0.057 -0.039 +0.001 -0.076 -0.029 -0.001 -0.075 -0.015 -0.001 -0.033

Vary 1st Stage
[14] 𝑎 = 0.15 -0.003 +0.027 -0.005 -0.003 +0.005 -0.006 -0.008 -0.055 -0.010 -0.005 +0.005 -0.007 +0.026 +0.042 +0.062
[15] 𝑎 = 1.00 -0.002 +0.001 -0.006 -0.001 +0.001 -0.004 -0.005 +0.001 -0.012 -0.003 -0.000 -0.008 +0.002 +0.003 -0.001

This table displays the Bias for ourMonte Carlo analysis across different experiments for the fourmain parameters of interest.
* Baseline is𝑀 = 50, 𝑆𝑚 = 1, 000, 𝜃𝑧1 = 1.0, and 𝑎 = 0.5.

Table 5:Monte Carlo Results: Bias
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𝜃𝑧1 𝜃𝑧2 𝜃𝜈1 𝜃𝜈2 𝛽1
CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE

[1] baseline* 96.7 94.2 95.0 94.7 94.8 95.0 96.0 95.3 95.7 95.0 95.0 94.7 95.8 94.0 95.2

Vary 𝑆𝑚
[2] 𝑆𝑚 = 250 95.0 95.7 93.9 94.1 94.3 92.8 95.1 96.7 94.5 94.5 93.6 94.6 94.0 94.6 93.8
[3] 𝑆𝑚 = 4, 000 93.3 95.3 92.8 94.7 94.8 94.3 93.6 95.7 93.5 95.1 96.1 93.9 95.5 95.4 95.2

Vary𝑀
[4]𝑀 = 10 94.6 94.4 95.2 94.3 94.1 93.9 95.7 97.4 95.7 93.5 93.2 94.3 95.6 94.3 96.0
[5]𝑀 = 1, 000 95.9 95.7 94.9 94.9 95.2 94.4 94.9 94.5 95.2 95.5 94.8 94.1 94.9 94.6 95.2

Vary (𝜃𝑧, 𝜃𝜈)
[6] (0.3, 0.3) 91.1 96.9 91.4 94.5 97.2 91.8 90.5 95.0 89.8 94.4 95.0 91.0 94.9 96.4 94.2
[7] (0.3, 1.0) 93.1 93.8 90.4 95.2 94.8 90.5 94.0 94.6 90.8 96.1 95.3 92.3 94.9 94.7 91.9
[8] (0.3, 2.0) 89.4 94.1 40.2 95.3 95.1 42.8 86.4 94.6 41.3 90.7 94.7 41.6 92.1 94.1 45.4
[9] (1.0, 0.3) 94.7 96.0 94.4 94.7 94.9 93.8 96.6 95.2 97.0 96.2 97.3 96.5 95.3 95.7 95.6
[10] (1.0, 2.0) 85.9 93.1 69.9 90.9 94.4 71.4 86.1 93.8 70.3 89.8 94.1 72.3 92.1 94.2 78.7
[11] (2.0, 0.3) 93.7 96.1 94.6 93.7 95.7 93.9 96.8 95.0 97.0 96.9 96.8 97.3 94.6 96.5 95.2
[12] (2.0, 1.0) 93.9 95.1 94.9 95.8 95.5 95.0 93.5 95.0 94.7 95.2 94.3 94.7 94.3 93.7 94.7
[13] (2.0, 2.0) 92.1 94.6 86.0 91.9 93.5 86.3 91.7 94.2 87.5 90.7 94.3 86.6 95.0 94.6 93.1

Vary 1st Stage
[14] 𝑎 = 0.15 94.1 88.4 93.2 95.5 95.1 92.8 94.3 99.8 94.4 94.3 96.3 92.7 92.1 96.2 91.8
[15] 𝑎 = 1.00 95.7 95.3 94.4 94.6 93.7 93.4 94.5 95.0 93.8 95.0 94.4 93.7 96.3 95.7 95.8

This table displays the Acceptance Probability (%) for ourMonte Carlo analysis across different experiments for the fourmain parameters of interest.
* Baseline is𝑀 = 50, 𝑆𝑚 = 1, 000, 𝜃𝑧1 = 1.0, and 𝑎 = 0.5.

Table 6:Monte Carlo Results: Acceptance Probability (%)
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𝜃𝑧1 𝜃𝑧2 𝜃𝜈1 𝜃𝜈2 𝛽1
CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE

[1] baseline* 0.026 0.048 0.032 0.021 0.028 0.031 0.051 0.101 0.061 0.040 0.052 0.062 0.056 0.076 0.060

Vary 𝑆𝑚
[2] 𝑆𝑚 = 250 0.040 0.053 0.063 0.028 0.037 0.062 0.078 0.103 0.123 0.049 0.057 0.124 0.066 0.075 0.089
[3] 𝑆𝑚 = 4, 000 0.015 0.047 0.016 0.013 0.026 0.016 0.029 0.101 0.031 0.026 0.051 0.031 0.050 0.075 0.050

Vary𝑀
[4]𝑀 = 10 0.030 0.098 0.032 0.028 0.055 0.032 0.060 0.218 0.063 0.055 0.110 0.064 0.108 0.161 0.109
[5]𝑀 = 1, 000 0.013 0.017 0.031 0.010 0.015 0.031 0.022 0.026 0.061 0.014 0.018 0.061 0.016 0.017 0.039

Vary (𝜃𝑧, 𝜃𝜈)
[6] (0.3, 0.3) 0.013 0.024 0.014 0.011 0.015 0.015 0.096 0.180 0.112 0.075 0.095 0.129 0.051 0.061 0.053
[7] (0.3, 1.0) 0.015 0.019 0.026 0.012 0.014 0.026 0.084 0.096 0.164 0.047 0.048 0.167 0.066 0.070 0.102
[8] (0.3, 2.0) 0.018 0.021 0.030 0.015 0.017 0.030 0.114 0.125 0.262 0.063 0.064 0.254 0.075 0.079 0.140
[9] (1.0, 0.3) 0.018 0.050 0.019 0.016 0.029 0.019 0.051 0.177 0.054 0.048 0.105 0.056 0.050 0.070 0.050
[10] (1.0, 2.0) 0.036 0.050 0.051 0.026 0.031 0.051 0.091 0.128 0.132 0.060 0.066 0.131 0.066 0.081 0.083
[11] (2.0, 0.3) 0.026 0.096 0.027 0.024 0.055 0.027 0.045 0.234 0.046 0.042 0.168 0.045 0.049 0.080 0.049
[12] (2.0, 1.0) 0.037 0.096 0.041 0.033 0.054 0.041 0.039 0.122 0.042 0.034 0.067 0.042 0.052 0.081 0.054
[13] (2.0, 2.0) 0.053 0.096 0.068 0.043 0.056 0.068 0.071 0.135 0.090 0.055 0.071 0.089 0.059 0.082 0.066

Vary 1st Stage
[14] 𝑎 = 0.15 0.030 0.311 0.032 0.021 0.073 0.031 0.059 0.787 0.061 0.040 0.062 0.062 0.183 0.486 0.186
[15] 𝑎 = 1.00 0.020 0.027 0.031 0.020 0.027 0.031 0.040 0.052 0.062 0.039 0.052 0.062 0.037 0.039 0.042

This table displays theMedian Standard Error for ourMonte Carlo analysis across different experiments for the fourmain parameters of interest.
* Baseline is𝑀 = 50, 𝑆𝑚 = 1, 000, 𝜃𝑧1 = 1.0, and 𝑎 = 0.5.

Table 7:Monte Carlo Results: Median Standard Error
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𝜃𝑧1 𝜃𝑧2 𝜃𝜈1 𝜃𝜈2 𝛽1
CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE CLEER GMM-M MDLE

[1] baseline* 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Vary 𝑆𝑚
[2] 𝑆𝑚 = 250 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[3] 𝑆𝑚 = 4, 000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Vary𝑀
[4]𝑀 = 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[5]𝑀 = 1, 000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Vary (𝜃𝑧, 𝜃𝜈)
[6] (0.3, 0.3) 0.0 0.0 0.0 0.0 0.0 0.0 8.7 15.4 10.0 2.6 11.4 11.2 0.0 0.0 0.0
[7] (0.3, 1.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
[8] (0.3, 2.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.0
[9] (1.0, 0.3) 0.0 0.0 0.0 0.0 0.0 0.0 0.3 11.1 0.5 0.3 10.0 0.5 0.0 0.0 0.0
[10] (1.0, 2.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[11] (2.0, 0.3) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 18.4 0.1 0.0 12.2 0.0 0.0 0.0 0.0
[12] (2.0, 1.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[13] (2.0, 2.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Vary 1st Stage
[14] 𝑎 = 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
[15] 𝑎 = 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

This table displays the Boundary Proportion (%) for ourMonte Carlo analysis across different experiments for the fourmain parameters of interest.
* Baseline is𝑀 = 50, 𝑆𝑚 = 1, 000, 𝜃𝑧1 = 1.0, and 𝑎 = 0.5.

Table 8:Monte Carlo Results: Boundary Proportion (%)

29



𝜃𝑧1 𝜃𝑧2 𝜃𝜈1 𝜃𝜈2 𝛽1
CLEER GMM-M CLEER (19) CLEER GMM-M CLEER (19) CLEER GMM-M CLEER (19) CLEER GMM-M CLEER (19) CLEER GMM-M CLEER (19)

Panel A: Median Absolute Error
[16] 𝑎 = 1.0, 𝜃𝜈 = 2 0.019 0.019 0.017 0.020 0.020 0.018 0.047 0.044 0.042 0.045 0.047 0.040 0.029 0.027 0.027
[17] 𝑎 = 1.0, 𝜃𝜈 = 2.5 0.030 0.020 0.018 0.030 0.022 0.019 0.094 0.053 0.051 0.093 0.053 0.050 0.032 0.028 0.028
[18] 𝑎 = 1.0, 𝜃𝜈 = 3 0.061 0.021 0.021 0.061 0.022 0.023 0.215 0.057 0.067 0.211 0.059 0.067 0.058 0.028 0.028
[19] 𝑎 = 0.5, 𝜃𝜈 = 2 0.032 0.035 0.027 0.021 0.022 0.018 0.081 0.087 0.071 0.049 0.047 0.042 0.049 0.054 0.047
[20] 𝑎 = 0.5, 𝜃𝜈 = 2.5 0.066 0.034 0.029 0.038 0.022 0.020 0.206 0.104 0.089 0.114 0.053 0.054 0.091 0.058 0.051
[21] 𝑎 = 0.5, 𝜃𝜈 = 3 0.133 0.036 0.039 0.078 0.024 0.026 0.465 0.117 0.136 0.257 0.062 0.074 0.177 0.059 0.056

Panel B: Bias
[16] 𝑎 = 1.0, 𝜃𝜈 = 2 -0.012 +0.000 -0.006 -0.011 +0.001 -0.005 -0.031 -0.000 -0.013 -0.029 +0.002 -0.012 -0.007 +0.000 +0.002
[17] 𝑎 = 1.0, 𝜃𝜈 = 2.5 -0.030 +0.000 -0.006 -0.029 +0.002 -0.007 -0.093 +0.001 -0.019 -0.091 +0.005 -0.020 -0.025 +0.001 -0.001
[18] 𝑎 = 1.0, 𝜃𝜈 = 3 -0.061 +0.002 -0.014 -0.061 +0.002 -0.015 -0.216 +0.003 -0.049 -0.214 +0.004 -0.051 -0.056 +0.002 -0.008
[19] 𝑎 = 0.5, 𝜃𝜈 = 2 -0.026 -0.001 -0.009 -0.015 +0.000 -0.005 -0.069 -0.004 -0.024 -0.037 +0.002 -0.012 -0.032 -0.004 -0.007
[20] 𝑎 = 0.5, 𝜃𝜈 = 2.5 -0.067 -0.001 -0.017 -0.038 +0.003 -0.009 -0.207 -0.004 -0.054 -0.112 +0.004 -0.030 -0.090 -0.003 -0.018
[21] 𝑎 = 0.5, 𝜃𝜈 = 3 -0.134 +0.001 -0.035 -0.079 +0.001 -0.021 -0.469 +0.002 -0.127 -0.259 +0.003 -0.063 -0.182 +0.000 -0.042

Panel C: Acceptance Probability (%)
[16] 𝑎 = 1.0, 𝜃𝜈 = 2 90.6 93.5 93.2 93.1 93.7 94.7 90.9 94.3 94.3 94.0 95.5 95.2 93.2 93.7 93.8
[17] 𝑎 = 1.0, 𝜃𝜈 = 2.5 78.6 95.2 94.2 79.3 93.7 93.8 74.2 93.5 93.6 73.2 94.0 93.8 90.9 93.6 94.5
[18] 𝑎 = 1.0, 𝜃𝜈 = 3 38.1 93.3 92.1 37.7 92.9 90.0 20.5 94.3 90.2 20.8 93.7 90.7 70.0 94.7 94.6
[19] 𝑎 = 0.5, 𝜃𝜈 = 2 87.8 93.6 93.8 91.3 94.6 94.7 87.4 93.5 93.1 91.9 94.6 95.1 92.1 93.1 94.0
[20] 𝑎 = 0.5, 𝜃𝜈 = 2.5 56.7 94.5 92.5 70.9 94.7 93.0 51.1 94.5 92.6 62.6 94.0 94.1 74.7 93.8 93.5
[21] 𝑎 = 0.5, 𝜃𝜈 = 3 5.3 94.8 85.3 19.5 92.3 87.5 3.6 94.4 84.4 11.0 93.9 88.0 22.2 94.6 91.8

Panel D: Median Standard Error
[16] 𝑎 = 1.0, 𝜃𝜈 = 2 0.025 0.029 0.025 0.025 0.029 0.025 0.059 0.065 0.060 0.059 0.065 0.060 0.039 0.040 0.040
[17] 𝑎 = 1.0, 𝜃𝜈 = 2.5 0.026 0.030 0.027 0.026 0.030 0.027 0.069 0.076 0.072 0.069 0.076 0.072 0.039 0.040 0.040
[18] 𝑎 = 1.0, 𝜃𝜈 = 3 0.027 0.032 0.028 0.027 0.032 0.028 0.077 0.087 0.083 0.077 0.087 0.083 0.039 0.041 0.040
[19] 𝑎 = 0.5, 𝜃𝜈 = 2 0.036 0.050 0.037 0.026 0.031 0.026 0.092 0.129 0.096 0.060 0.066 0.062 0.066 0.081 0.068
[20] 𝑎 = 0.5, 𝜃𝜈 = 2.5 0.037 0.051 0.041 0.027 0.032 0.028 0.107 0.150 0.120 0.070 0.078 0.074 0.067 0.083 0.072
[21] 𝑎 = 0.5, 𝜃𝜈 = 3 0.036 0.052 0.042 0.027 0.034 0.029 0.119 0.170 0.140 0.079 0.090 0.085 0.066 0.082 0.073

Notes: This table presentsMonte Carlo results for integration bias experiments.

Table 9:Monte Carlo Results: Integration Bias
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L Glossaries of Common Results and Notation
This appendix includes a listing of common results used throughout the paper and referenced by

name and a glossary of some of the notation used.
L.1 Common results referenced by name
annihilator matrix For givenmatrix𝐴,ℳ𝐴 = 𝕀 − 𝒫𝐴 with𝒫𝐴 a projectionmatrix
Bernstein inequality If {𝑥𝑖} are independent with variances 𝜎2𝑖 and common upper bound ̄𝑥 then

ℙ(|∑𝑖 𝑥𝑖| > 𝐶) ≤ 2 exp[−3𝐶2 / (6∑𝑖 𝜎
2
𝑖 + 2𝐶 ̄𝑥)]

Bonferroni inequality ℙ(𝐴 ∪ 𝐵) ≤ ℙ(𝐴) + ℙ(𝐵)
concentration parameter In a single regressor linear model 𝑦 = 𝑥𝛽 + 𝑢, where 𝑥 = 𝑍𝜋 + 𝑣 for

instruments 𝑍, the number ‖𝑍▿𝜋‖2/𝜎2𝑣 ; generalizations thereof inmore complicatedmodels.
Cramér’s theorem If 𝑥𝑛

𝑝
→ 𝑥 and 𝑦𝑛

𝑑
→ 𝑦 then 𝑥𝑛𝑦𝑛

𝑑
→ 𝑥𝑦

esssup essential supremum (in this context the top of the support of the random variable)
Hoeffding inequality If {𝑥𝑖} are independent with upper and lower bounds 𝑢𝑖, ℓ𝑖 then ℙ(‖∑𝑖 𝑥𝑖‖ >

𝐶) ≤ 2 exp(−2𝐶2 / ∑𝑖(𝑢𝑖 − ℓ𝑖)2)
Hölder inequality 𝔼(‖𝑥‖ ‖𝑦‖) ≤ (𝔼‖𝑥‖𝑝)1/𝑝(𝔼‖𝑦‖𝑝/(𝑝−1))1−1/𝑝 for any 1 < 𝑝 < ∞ for which the

expectations exist (special case of Jensen inequality)
information matrix equality For likelihood estimators, the expectation of the outer product of the

gradients equals minus that of the Hessian
Jensen inequality If 𝑔 is convex then 𝑔(𝔼𝑥) ≤ 𝔼𝑔(𝑥) provided that both expectations exist
Lindeberg condition For a triangular independent array {𝑥𝑖𝑛}, with ∑𝑖 𝕍𝑥𝑖𝑛 = 1, ∀𝜖 >

0:∑𝑖 𝔼[𝑥
2
𝑖𝑛𝟙(|𝑥2𝑖𝑛 ≥ 𝜖)] ≺ 1

Markov inequality ℙ(‖𝑥‖ ≥ 𝑡) ≤ 𝑡−𝑟𝔼‖𝑥‖𝑟 for any 𝑡 > 0 and 𝑟 > 0 for which themoment exists
Moore Penrose inverse For an arbitrarymatrix𝐴, the uniquematrix𝐴+ for which𝐴𝐴+ = (𝐴𝐴+)▿,

𝐴+𝐴 = (𝐴+𝐴)▿,𝐴𝐴+𝐴 = 𝐴,𝐴+𝐴𝐴+ = 𝐴+, i.e.𝑉𝐷−1𝑈▿ when the singular value decomposition
is used with𝐷 amatrix with only the nonzero singular values

mean value theorem 𝑓(𝑡) = 𝑓(0) + 𝑓′(𝜆𝑡)𝑡 for some 0 ≤ 𝜆 ≤ 1 (or a higher order analog thereof)
norm of a matrix Weuse ‖𝐴‖ = max‖𝑥‖=1 ‖𝐴𝑥‖, i.e. the square root of the largest eigenvalue of 𝐴

▿𝐴.
partitioned inverse Assuming the existence of the inverses,

[
𝐴 𝐵▿

𝐵 𝐶
]
−1

= [
(𝐴 − 𝐵▿𝐶−1𝐵)−1 −(𝐴 − 𝐵▿𝐶𝐵)−1𝐵▿𝐶−1

⋅ (𝐶 − 𝐵𝐴−1𝐵▿)−1
] .

projection matrix For givenmatrix𝐴, thematrix𝒫𝐴 = 𝐴(𝐴▿𝐴)−1𝐴▿ (ormore generally𝐴𝐴+)
Schwarz inequality Hölder inequality for 𝑝 = 2
Slutsky 𝑥𝑛

𝑝
→ 𝑥 ⇒ 𝑔(𝑥𝑛)

𝑝
→ 𝑔(𝑥) if 𝑔 is continuous

sigma algebra information set
slowly varying function a function for which lim𝑥→∞ 𝑓(𝑡𝑥) / 𝑓(𝑥) = 1 for all 𝑡 > 0; logarithms are

an example
singular value decomposition Any real matrix 𝐴 can be written as 𝑈𝐷𝑉▿, where 𝑈 and 𝑉 have

orthonormal columns (𝑈▿𝑈 = 𝕀 and𝑉▿𝑉 = 𝕀) and𝐷 is a diagonal matrix.
triangle inequality ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖
weak law of large numbers (WLLN) any of a number of results showing convergence of a sample
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mean to its expectation
Woodbury matrix identity (𝐴 + 𝐵𝐶−1𝐵▿)−1 = 𝐴−1 − 𝐴−1𝐵(𝐶 + 𝐵▿𝐴−1𝐵)−1𝐵▿𝐴−1

L.2 Notation (incomplete list)
A

𝒜 plim𝑀→∞(𝐵
▿𝐵 / 𝑀). 15

𝔸 the sigma algebra generated by product characteristics and the𝐷𝑖𝑚’s. 9

B

𝐵matrix of instruments. 7
𝑏𝑗𝑚 vector of instruments. 6
𝐵opt𝑚 optimal instruments formarket𝑚. 20
̂𝛽CLEER estimator of 𝛽 . 6

ℬ parameter space of 𝛽 . 11
𝛽 (true value of) product level regression coefficients. 5

C

𝑐∗𝜉 optimal variance proxy (OVP) for 𝜉𝑗𝑚, see G. 10
𝑐∗𝑧 OVP for 𝑧𝑖𝑚, see G. 11
̂𝜒 product level moments part of the objective function defined in terms of 𝛿, 𝛽. 6

→ converges (or diverges) to. 6
𝑝
→ converges in probability to. 6

D

𝑑𝑏 number of instruments. 6
𝑑𝛽 dimension of 𝛽 . 6
𝐷𝑖𝑚 dummy to indicate whether consumer 𝑖 is included in themicro sample. 6
𝑑𝜈 number of random coefficients. 5
𝑑𝜃 dimension of 𝜃. 8
𝑑𝑥 number of observed product characteristics. 4
𝑑𝑧 number of demographic characteristics. 5
𝜕 partial derivative(s) with respect to its subscript(s). 5
̂𝛿CLEER estimator of 𝛿 . 6

𝛿𝑗𝑚 (true) ‘mean’ utility. 5
𝛥 ̂ℒ ̂ℒ − ℒ (analogously when endowedwith a ⬩ superscript). 13
𝛥ℓ𝑖𝑗𝑚 log 𝜍𝑖𝑗𝑚 − log 𝜍𝑗𝑚. 19
𝛿𝑚 Berry inversion (when used as a function). 8
𝛥�̂� �̂� − 𝛺 (analogously when endowedwith a ⬩ superscript). 13
𝛥�̂� �̂� − 𝛷. 13
𝔻𝜋 derivative of Berry (1994) inversion with respect to𝜋,𝔻𝜃 = 𝜕𝜋▿𝛿. 10
𝔻𝜃 derivative of Berry (1994) inversion with respect to 𝜃,𝔻𝜃 = 𝜕𝜃▿𝛿. 10
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d differential used in integration. 5
𝑑𝑏 number of (product level) instruments. 11
𝒟𝑗𝑘𝑚 diversion ratio from good 𝑗 to good 𝑗with respect to unobserved quality, defined at the truth. 31
𝔇mean absolute error based diversion statistic. 32

E

𝔼 expectation. 6
ℓ𝑖𝑗𝑚 log 𝜍𝑖𝑗𝑚. 19, 40
𝜖 used as a distance in the consistency proof. 9
𝜀𝑖𝑚 idiosyncratic product specific taste shocks. 5
𝜂 convenience rate 𝜂 = 𝜅3. 13

F

𝐹𝑚 distribution of unobservable demographics. 5

G

𝐺𝑚 distribution of observable demographics. 5
𝛤𝜋 = {𝔼[ℒ𝜋𝜋 − ℒ𝜋𝜃ℒ+

𝜃𝜃ℒ𝜃𝜋]}
−1/2. 15

𝛤𝜃 = [𝔼(ℒ𝜃𝜃 − ℒ𝜃𝜋ℒ−1
𝜋𝜋ℒ𝜋𝜃) + 𝑀𝛯𝒜𝛯▿]−1/2; basically a population analog to ̂𝛤𝜃. 15

̂𝛤𝜃 square root of the 𝜃𝜃 block of the inverse Hessian of 𝛺, ̂𝛤𝜃 = �̂�−1/2
𝜃𝜃 . 14

⪰ left hand side is element-wise of greater or equal order than the right-hand side. 10
≻ indicates that the right-hand side is element-wise negligible to the left-hand side. 10

H

𝐻Hessianmatrix of subscript function evaluated at the truth, e.g.,𝐻𝛺. 16

I

𝐼 total number of consumers in themicro sample (across all markets). 8
𝑖 consumer index. 5
𝐼𝑚 number of consumers in themicro sample inmarket𝑚. 6
∞ infinity. 6

J

𝐽 total number of products across all markets. 7
𝑗 product index. 4
𝐽𝑚 number of products inmarketm. 4

K

𝜅 rate used in C, 𝜅 = exp(−4𝜅↑𝛿). 10
𝜅↑𝛿 rate used in C, 𝜅

↑
𝛿 = 2√2𝑐∗𝜉 log𝑀. 10
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𝜅𝜋 we show thatmin𝑚,𝑗 𝜋𝑗𝑚 ⪰ 𝜅𝜋. 35

L

�̂�mixed data likelihood defined in terms of 𝜃, 𝛿. 6
̂ℒ◾minusmacro loglikelihood defined in terms of 𝜋. 8
̃ℓ𝑖𝑗𝑚 log𝜎𝑖𝑗𝑚. 19

ℓ𝑗𝑚 log 𝜍𝑗𝑚. 19
�̂�◾macro likelihood as a function of 𝜃, 𝛿. 7
�̂�⬩micro likelihood as a function of 𝜃, 𝛿. 7
ℒ⬩ (minus)micro loglikelihood. 9
̂ℒ (minus) sample loglikelihood defined in terms of 𝜃, 𝜋. 8
̂ℒ⬩minus themicro loglikelihood. 8

𝜆 index of micro identification strength, ‖𝜃 𝑧‖. 10
‖𝜃 − 𝜃 ‖2𝜆 norm used in definition of 𝜌⬩, ‖𝜃 − 𝜃 ‖2𝜆 = ‖𝜃𝑧 − 𝜃 𝑧‖2 + 𝜆2‖𝜃𝜈 − 𝜃 𝜈‖2. 10
≺ indicates that the left-hand side is (element by element) of smaller order than (negligible compared
to) the right-hand side. 12

M

𝑀 number of markets. 4
𝑚market index. 4
�̂� sample product level moment. 7
𝑀𝜙2𝛽 smallest eigenvalue of the concentration parameter for 𝛽 . 18
𝑀𝜙2𝜈 smallest eigenvalue of the concentration parameter for (𝜃𝜈 , 𝛽 ). 18
𝑀𝜙2𝜃 smallest eigenvalue of the concentration parameter for (𝜃 , 𝛽 ). 18
𝜇𝜈𝑖𝑚𝑗𝑚 deviation due to taste shock. 5
𝜇𝑧𝑖𝑚𝑗𝑚 deviation frommean utility due to observed demographic variables. 5

N

𝑁𝑚 population size. 5
𝜈𝑖𝑚 unobserved demographics. 5

O

𝛺 population objective function. 9
�̂� sample objective function. 8

P

ℙ probability. 5
𝒫𝐵 orthogonal projectionmatrix. 9
𝒫 projectionmatrix that arises after 𝛽 has been profiled out. 9
𝛷 population product level moments objective function. 9
�̂� product level moments objective function defined in terms of 𝜃, 𝜋. 8
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�̂�CLEER estimator of 𝜋 . 9
ℿ𝜅 a subset of ℿ,∏𝑚ℿ𝜅

𝑚 whereℿ𝜅
𝑚 = {𝜋𝑚:min𝑗 𝜋𝑗𝑚 ≥ 𝜅}. 12

ℿ𝜅𝜋
𝑚 a subset of ℿ𝜅 replacing 𝜅with 𝜅𝜋 = 𝜅3/4. 14

𝜋𝑚 vector of 𝜋𝑗𝑚’s (excluding𝜋0𝑚). 8
𝜋𝑚 true product level choice probabilities. 6
ℿ parameter space of 𝜋 . 11
𝓅𝑗𝑚 endogenous product characteristics. 5
⋅+Moore Penrose inverse. 9

Q

�̂�𝜃𝜃 the inverse of the 𝜃, 𝜃 block of the inverse Hessian of �̂�,𝒬𝜃𝜃 = �̂�𝜃𝜃 − �̂�𝜃𝜋�̂�−1
𝜋𝜋�̂�𝜋𝜃. 14

̂𝓆𝜃 component of numerator term in quadratic expansion, ̂𝓆𝜃 = �̂�𝜃 −𝛺𝜃𝜋𝛺−1
𝜋𝜋(�̂�⬩

𝜋 − ℒ◾
𝜋𝜋(𝑠 − 𝜋 ), see

L8. 15

R

𝜌𝐷 rate governing𝛥�̂�⬩(𝜃, 𝜋) − �̂�⬩(𝜃 , 𝑠)(𝜃, 𝜋), 𝜌𝐷(𝜃, 𝜋) = 𝜂max{𝜂𝜌id(𝜃), 𝜌◾(𝜋)}. 13
𝜌id identification strength (as a function of 𝜃) 𝜌𝛷(𝜃) = ‖𝒫𝔻𝜃(𝜃 , 𝜋 )(𝜃 − 𝜃 )‖2, see C. 9
𝜌◾ rate (function of 𝜋) governing convergence of market shares to choice probabilities 𝜋, 𝜌◾(𝜋) =
∑𝑚 𝜌◾𝑚(𝜋𝑚) = ∑𝑚𝑁𝑚‖𝑠𝑚 − 𝜋𝑚‖2. 13
𝜌⬩micro identification strength, 𝜌⬩(𝜃) = 𝐼‖𝜃 − 𝜃 ‖2𝜆, see A. 9
𝜌𝑁 rate governing total population increase, 𝜌𝑁 = ∑𝑚𝑁−1

𝑚 . 12
𝜌𝛷 product level moment identification strength, see B. 9
𝜌ᵆ rate governing smallest market population increase, 𝜌ᵆ = 1 / min𝑚√𝑁𝑚. 12

S

𝓈𝑖𝑗𝑚(𝜈; 𝜃, 𝛿) choice probability before integrating out random coefficients. 5
𝑠𝑗𝑚 observedmarket share. 6
𝓈𝑗𝑚 choice probability before integrating out random coefficients. 5
𝜍𝑖𝑗𝑚micro choice probability function defined in terms of 𝜃, 𝜋𝑚. 8
𝜎𝑗𝑚 unconditional choice probability function. 5
𝜎𝑧𝑖𝑚𝑗𝑚 micro choice probability function in terms of 𝜃, 𝛿. 5
when used as a superscript to a parameter it indicates the true value of that parameter; if used as a

superscript to a function it indicates that the function is evaluated at the true values. 5, 32

T

𝛩 parameter space. 8
𝛩𝜖 𝜖 neighborhood of 𝜃 . 9
̂𝜃CLEER estimator of 𝜃 . 6

𝜣 𝜈 (true)matrix of utility coefficients on 𝜈 × 𝑥. 5
𝜃 𝜈 vector of free utility coefficients on unobservable demographics. 5
𝜣 𝑧 (true)matrix of utility coefficients on 𝑧 × 𝑥. 5
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𝜃 𝑧 vector of free utility coefficients on observable demographics. 5
▿ transposition. 5

U

𝑢𝑖𝑗𝑚 utility. 5

V

𝜋 vector of 𝜋𝑗𝑚’s across all markets. 8
𝒱𝜃 variance of the asymptotic distribution of ̂𝛤−1𝜃 ( ̂𝜃 − 𝜃 ).. 14
𝕍 variance function. 11

W

�̂�weightmatrix. 7

X

̃𝑥𝑗𝑚 exogenous product characteristics. 5
𝑋𝑚 observedmatrix of product characteristics formarket𝑚. 5
𝒳𝑚 support of 𝑥𝑗𝑚. 11
𝛯 difference of 𝛯𝜃 and𝛯𝜋. 15
𝛯𝜋 at the truth, plim𝑀→∞(ℒ𝜃𝜋ℒ−1

𝜋𝜋𝔻
▿
𝜋𝒫𝐵(𝐵

▿𝐵)−1). 15
𝛯𝜃 at the truth, plim𝑀→∞[𝔻

▿
𝜃𝒫𝐵(𝐵

▿𝐵)−1]. 15
𝜉𝑗𝑚 unobserved product attribute. 4
𝜉𝑚 unobserved product characteristics. 5
𝑥𝑗𝑚 vector of observed product characteristics. 4

Y

𝑦𝑖𝑗𝑚 consumer choice dummy. 5
𝑦𝑖𝑚 vector of 𝑦𝑖𝑗𝑚’s for all inside goods. 6

Z

𝑧𝑖𝑚 demographic characteristics. 5
𝒵 support of consumer characteristics, 𝑧𝑖𝑚. 10
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